
XCMDs and XFCNs

WaveTrak XCMDs and XFCNs

General Considerations

As we saw in the previous chapter, the commands or functions that WaveTrak
executes are written in both HyperTalk and as XCMDs/XFCNs written in C and
assembly language. An XCMD (external command) or XFCN (external function)
is nothing more than a module of executable code (a code resource in Mac
terminology) that is called by a stack to perform an operation. The advantage of
these externals is their execution speed. WaveTrak relies heavily on these to
perform most of its real-time and computationally intensive operations. In fact,
WaveTrak uses the HyperCard stack metaphor only as a familiar shell to interact
with the user; most of the work is done by the more than 70 XCMDs. XCMDs and
XFCNs are virtually identical, except that an XFCN returns a value (because it's a
function) whereas an XCMD does not. The terms are used interchangeably in this
manual when externals are referred to in the generic sense. The calling sequence is
slightly different as well; XFCNs require parentheses around their parameters,
whereas XCMDs do not:

Example 1:

get myXFCN (param1, param2, param3)

myXCMD param1,param2,param3

As far as you, the programmer, are concerned, XCMDs appear as standard
HyperTalk commands, and XFCNs as standard HyperTalk functions. Unless
otherwise stated, you must supply the required number of parameters, even if one
of them is empty:

1

XCMDs and XFCNs

Example 2:

put empty into param2
myXCMD param1,param2,param3

or
myXCMD param1,,param3 -- param2 is empty

When an external needs to return only a single value, it is usually created as an
XFCN. However, many externals need to return several values; for example, the
data acquisition commands must return up to 16 waves at a time. The way an
external returns multiple values is by passing them back in global variables. You
inform an external of which globals to use by passing the name(s) of the global
variables:

Example 3:

-- acquire a single wave
-- return result in global variable 'theWave'
global theWave
...
AcqWave

sampleInterval,npoints,startMUX,endMUX,"theWave"

Example 4:

-- acquire two waves
global w0,w1
...
AcqWave

sampleInterval,npoints,startMUX,endMUX,"w0,w1"
or

global w0,w1
...
put "w0,w1" into gList
AcqWave sampleInterval,npoints,startMUX,endMUX,gList

2

XCMDs and XFCNs

It doesn't matter what globals you choose to receive the data, as long as there are at
least as many globals as there are channels to be acquired. If you change the
starting channel, but keep the number of channels the same, you don't have to
change the globals that receive the new data, as long as you keep track what goes
where. Here's an example:

3

XCMDs and XFCNs

Example 5:

global w0,w1,w2,w3
...
put "w0,w1,w2,w3" into gList
put 0 into startMUX -- acquire 4 channels
put 3 into endMUX
AcqWave sampleInterval,npoints,startMUX,endMUX,gList

The data will be returned as follows:

Ch. 0 w0

Ch. 1 w1

Ch. 2 w2

Ch. 3 w3

changing the channels:

global w0,w1,w2,w3
...
put "w0,w1,w2,w3" into gList
put 4 into startMUX -- still 4 channels, but start

at #4
put 7 into endMUX
AcqWave sampleInterval,npoints,startMUX,endMUX,gList

The data will be returned as follows:

Ch. 4 w0

Ch. 5 w1

Ch. 6 w2

Ch. 7 w3

4

XCMDs and XFCNs

The description of the Multiple button in the Scripting chapter explains how to
easily manage multiple channel acquisition using wave arrays.

5

XCMDs and XFCNs

Example 6:

-- import a wave from the clipboard
global theWave

put "-12" into resultType -- signed 12-bit wave
-- translate scrap from X,Y into WTRK compressed

format
-- result goes into global theWave
get XYTableToWave (GetScrap(),"theWave",resultType)
-- function returns info on conversion
put it into XYresult
put item 1 of XYresult into sampleInterval
put item 2 of XYresult into npoints

GetScrap() returns as its value the contents of the clipboard, and is directly passed
as the first parameter to XYTableToWave, which converts the ASCII data into a
compressed WaveTrak wave, returning it in the global "theWave".

Tip:

As a general rule, acquisition commands and other externals that either return
waves in globals (e.g. AcqWave) or require one or more waves as parameters
(e.g. AddWaves) expect the names of the global variables containing or
receiving the waves, that is, these globals are passed by reference. You can
only pass global variables by reference (you cannot pass the name of a local
variable and expect the XCMD to return data there). In contrast, externals
operating on non-wave data usually expect the parameters to be passed by
value (e.g. CommaToTab). You can therefore pass global or local variables
to these functions. The description of each external clearly describes how
parameters should be passed.

Acquisition Timing

6

XCMDs and XFCNs

A very important issue is the way acquisition commands digitize signals. In
example 3, say you acquire a single wave at 50 µs/sample (sampleInterval =
50). This

7

XCMDs and XFCNs

straightforward acquisition is illustrated in Fig. 11-1A. The A/D converter will
"freeze" the analog value on the sample-and-hold circuit and convert this analog
level to a digital value. The conversion process, along with software overhead
needed to read and store successive conversions, requires about 7 µs/sample,
therefore the minimum sampling interval for the MacADIOS II on-board A/D
converter is 7. There is also an upper limit of 13107 µs for the sampling interval.

Technical note:

Timer channel number 5 on the AM9513 chip is used for clocking A/D conversions. The timers have 16
bits of resolution and are clocked at a frequency of 5 MHz, therefore the maximum sample interval is
65535/5 MHz = 13107 µs.

Because the MacADIOS II hardware has only one sample-and-hold amplifier, sampling multiple channels
simultaneously cannot be performed in true synchrony. WaveTrak attempts to make the conversions as close to
synchronous as possible, by sampling successive channels as soon as the previous channel's conversion is complete.
Fig. 11-1B illustrates the case for two channels again sampled at 50 µs/sample (sampleInterval = 50, example

4). Note that WaveTrak acquisition commands are designed to conserve the number of points and sampling rate
regardless of the number of channels requested (within the limitations of the A/D converter of course). So in
example 4, when two channels are requested with the same sample interval of 50 µs, the converter actually must
perform conversions at an average rate of 25 µs/conversion. If you requested 8 channels at 50 µs/channel, an error
would result because the hardware would have to perform conversions at an average rate of about 6 µs/conversion,
which is beyond its capability. In practice, sampling two or more channels adds another microsecond to the
conversion process to allow the multiplexer time to switch. Higher gains (x100), may require even more time (8-9
µs/conversion) for the circuitry to settle or you may end up with noisy data.

8

XCMDs and XFCNs

Tip:

As a general rule, the minimum sample interval is 7 µs (142 kHz) when acquiring a single channel. For two
or more channels, you must ensure that the effective sample interval (i.e. sampleInterval parameter ÷ number
of channels) be 8 µs (125 kHz) or longer.

Example:

Script demonstrating how the sample interval must be scaled when multiple channels are being digitized.

Correct
-- 1 channel, 7µs: OK
put 7 into sampleInterval
put 1 into startMUX
put 1 into endMUX
AcqWave sampleInterval,npoints,startMUX,endMUX,gList

or
-- 2 channels, 8µs/channel: OK
put 16 into sampleInterval
put 1 into startMUX
put 2 into endMUX
AcqWave sampleInterval,npoints,startMUX,endMUX,gList

Incorrect
-- 2 channels would require a 4µs converter: Error
put 8 into sampleInterval
put 1 into startMUX
put 2 into endMUX
AcqWave sampleInterval,npoints,startMUX,endMUX,gList

Normally, the 7 µs lag between adjacent channels does not cause significant problems, and you can manipulate the
waves as if they were acquired synchronously. However, if you sample 16 channels for example, the actual time
between point 0 from channel 0 and point

9

XCMDs and XFCNs

0 from channel 15 will be about 105 µs (15 * 7 µs), which may be unacceptable. Therefore, if you need for signals
to be sampled as synchronously as possible, minimize time lags by feeding them to adjacent channels.

point no.
time 0 50 100

sample interval

0 1 2

50 µs

A.

B.

time (µs) 0 50 1007 57 107
ch.1 point no. 0 1 2

sample interval 50 µs

ch.0 point no. 0 1 2

sample interval 50 µs

7 µsconversion
time

Fig. 11-1: Timing of A/D conversions for a single (A) and multiple (B) A/D channels. See text for
details.

XCMDs and XFCNs inform you of any errors by placing an error number in the global variable XCMDErr. A
value of zero means no errors occurred. A later chapter lists all WaveTrak errors along with descriptions of their
causes. It's a good idea to check the value of XCMDErr after every call to an XCMD to make sure it executed
successfully.

This chapter lists all of WaveTrak's XCMDs and XFCNs in alphabetical order. In order to help you find the
command you need, Tables 1 through 5 list all the externals by functional category along with a brief description.

10

XCMDs and XFCNs

Table 1: Data acquisition (WaveTrak AD version only).

AcqMean Measures the mean analog level at the A/D
input(s). Used to measure the baseline DC
level of a channel before triggering an event.

AcqWave Digitizes from 1 to 16 A/D channels
simultaneously. The number of samples is
limited by the amount of RAM.

AcqWaveTTL Digitizes from 1 to 16 A/D channels while
generating a (delayed) pulse at one of the
TTL outputs. Used to stimulate a system
with a TTL pulse while measuring its
response.

AcqWaveTimer Digitizes from 1 to 16 A/D channels while
generating a (delayed) pulse at one of the
AM9513 timer chip outputs. Allows for
very accurate pulse delay/width generation.

AcqWaveDAC Digitizes from 1 to 16 A/D channels while
generating a (delayed) pulse at one of the
D/A outputs. Used to stimulate a system
with an analog pulse while measuring its
response.

AcqWaveOnTTL Begins acquisition on either a rising or
falling edge at one of the TTL inputs.

AcqWavePreTTL Implements a pre-triggering function, where
part of the acquisition is captured before an
edge occurs at the TTL input port. It is
frequently necessary to know what
happened immediately before some event.

AcqWaveThresh Begins acquisition when the signal crosses a
pre-determined analog threshold, analogous
to an oscilloscope trigger level.

AvgWaveTTL Averages a series of waveforms while
generating (delayed) pulses at one of the
TTL outputs.

AvgWaveTimer Averages a series of waveforms while
generating (delayed) pulses at one of the
timer/counter chip outputs.

11

XCMDs and XFCNs

ReadTTLbit Reads value of one TTL input bit.
ReadTTLbyte Reads all 8 TTL input bits.

12

XCMDs and XFCNs

Table 2: Signal generation and related functions
(WaveTrak AD version only).

SetADGain Sets the on-board programmable gain
amplifier.

DACPulse Generates an analog pulse at the D/A
converter.

WriteDAC Writes an analog value to D/A converter.
StartPulseTrain Program the timer/counter chip to output a

continuous pulse train at a given frequency
and pulse width. Signal will continue after
this XFCN returns.

StopPulseTrain Stops counter/timer (e.g. stops a
StartPulseTrain command).

WriteModeByte Writes a value to the MacADIOS II mode
register.

WriteTTLbit Sets/clears one TTL output bit.
WriteTTLbyte Writes a byte to all 8 bits of TTL output

port.

13

XCMDs and XFCNs

Many of the wave math functions have a resultType parameter which allows you to select what data type the

operation will return. Standard WaveTrak data types are discussed in detail in the Scripting chapter.

Table 3: Waveform math, analysis and digital signal processing.

AddWaveK Adds a constant to a wave. Used to offset
waves for plotting, or to remove DC
component.

AddWaves Adds two waves together.
SubtractWaves Subtracts two waves.
MultWaveK Multiplies a wave by a constant. Used to

numerically amplify/attenuate waves.
MultWaves Multiplies two waves.
DivideWaves Divides two waves.
InitWaveK Initializes a wave to a constant.
InitWaveSin Initializes a wave to a sine function.
InitWaveNoise Initializes a wave to white noise.
GetWaveStats Computes wave statistics such as mean,

StdDev, RMS value, min, max, range, etc.
MeanWave Computes mean value of a segment of a

wave. Used to compute baseline of a
segment preceding a stimulus, or to get the
DC level of a signal.

AreaWave Computes the area under a wave.
AbsAreaWave Computes the absolute (rectified) area under

a wave.
ConvolveWave Convolves a wave with a set of FIR filter

coefficients to implement the filter.
DesignFIRlo Computes the coefficients of a lo-pass FIR

filter.
DifferentiateWave Differentiates a wave.
IntegrateWave Integrates a wave.
ThresholdWave Threshold detects a wave against a preset

trigger level.
AmplSpectrum Computes the frequency (amplitude)

14

XCMDs and XFCNs

spectrum of a wave with the FFT.
PowerSpectrum Computes the frequency (power) spectrum

of a wave with the FFT.
FilterWaveFFTloLog Lo-pass filters a wave using the FFT (log

rolloff).
FilterWaveFFThiLog Hi-pass filters a wave using the FFT (log

rolloff).
FilterWaveFFTloLin Lo-pass filters a wave using the FFT (linear

rolloff).
FilterWaveFFThiLin Hi-pass filters a wave using the FFT (linear

rolloff).
FilterWaveFIR Implements a finite impulse response (FIR)

non-recursive digital filter.
Window Multiplies a wave by a window function

(e.g. Hanning, Parzen, Welch) prior to
spectrum estimation or filtering to reduce
leakage.

Trim Deletes segments of a wave. Used to remove
unwanted segments after a response or
preceding a stimulus; or to remove segments
digitized during a long conditioning pulse
generated by e.g. AcqWaveDAC; or to
isolate a segment for analysis.

WaveToEventList Generates a list of events (zero-crossings)
from a wave.

15

XCMDs and XFCNs

Table 4: Drawing, importing and exporting.

DrawWave Draws up to 16 waves simultaneously on the
screen.

DrawWaveCoords Draws up to 16 waves simultaneously on the
screen; supports X,Y cursor read-out, zoom
in or out for detailed inspection.

OverlayWave Overlays up to 16 waves in a window,
without erasing existing waves.

CopyXYTable Converts a wave to numerical X,Y values in
text format, and copies to clipboard. Used
for exporting digitized waves into a
spreadsheet or statistical program.

CopyYTable Converts a wave to numerical Y values in
text format, and copies to clipboard.

CopyPICT Converts wave into a 72 dpi graphics object
for pasting into a drawing program like
Canvas or MacDraw.

CopyBigPICT Converts wave into a graphics object for
pasting into a drawing program like Canvas
or MacDraw. Wave is converted into a large
polygon, so that it can be reduced to
maintain full LaserWriter resolution.

WaveToXYTable Converts a wave to numerical X,Y values in
text format.

WaveToYTable Converts a wave to numerical Y values in
text format.

XYTableToWave Converts an ASCII table of XY or Y data to
a wave.

CommaToTab Converts a variable from comma- to tab-
delimited format.

TabToComma Converts a variable from tab- to comma-
delimited format.

ScrapToComma Converts contents of clipboard from tab- to
comma-delimited format.

ScrapToTab Converts contents of clipboard from

16

XCMDs and XFCNs

comma- to tab-delimited format.

17

XCMDs and XFCNs

18

XCMDs and XFCNs

Table 5: Miscellaneous functions.

CheckFPU Checks for presence of 68881/882 chip.
Used to disable functions (such as FFTs &
filters) that require FPU support.

HardwareInit (A/D version only) Initializes and checks hardware, checks for
presence of MacADIOS II card.

GetScrap Pastes the contents of the clipboard into a
HyperCard variable.

PutScrap Copies a HyperCard variable to the
clipboard. Used to export data generated
with a HyperCard script for pasting into
another application.

PutToGlobal Places a value into a global. Useful for
manipulating arrays of globals.

Alphabetical Listing of XCMDs and XFCNs

The following pages contain detailed descriptions of the XCMDs and XFCNs in
WaveTrak's data acquisition and signal processing toolbox. Note that XCMDs and
XFCNs that perform data acquistion require the optional WaveTrak AD version of
the software. Tables 1 and 2 above list list the functions that require the AD
version and a MacADIOS II data acquisition board.

You will refer to this section frequently when modifying existing scripts or writing
your own. 'Type' tells you whether the external is an XCMD or XFCN. 'Syntax'
illustrates a typical call; note that longer lines will wrap in the manual but must be
typed on a single line in the script editor, or broken up with the option-return
character (¬). A 'Description' follows, explaining what the external does and how
to use it. 'Result' summarizes the data returned by the command, and examples
illustrate its use.

19

XCMDs and XFCNs

AbsAreaWave

Type: XFCN

Syntax:
AbsAreaWave
("theWave",sampleInterval,startTime,endTime,baseline)

Description:
Computes the absolute (rectified) area (values below baseline are reflected above
before sum) of samples between startTime and endTime µs included, with
respect to baseline. Mathematically:

sampleInterval Σ
n=0

npoints-1

| y - baseline |n

where:
npoints is the number of points in the wave
yn is the value of the nth point
baseline and sampleInterval are parameters

"theWave" is the name of the global containing the wave (double quotes are
included to remind you to pass the wave by name, not by value).
sampleInterval is the original sampling interval in µs, startTime and
endTime define the segment of the wave to be summed. Passing -1 in endTime
tells the XFCN to continue to the last point. For example, pass startTime =
0,endTime = -1 to compute area of entire wave, or startTime,endTime = -1
to compute area from startTime to end of wave.

Result:
Returns a real value with dimensions µs x vertical unit, formatted according to
XYCoordYformat global. This is a raw area i.e. a sum of integer or floating point
values, which must be corrected for full-scale range, A/D coding, amplifier gain,
etc...

20

XCMDs and XFCNs

Example:
This example is taken from the 'Plot Abs Area' button in the root cards. It is
assumed that a wave has been previously stored in a trace card along with its
parameters in the 'HParams' field:

-- the original sampling rate
put line 3 in bg fld "HParams" into sampleInterval
-- copy the previously acquired wave into 'theWave'
put bg fld "data" into theWave
-- what's the data type?
put getWaveType(theWave) into resultType
-- get the previously measured baseline
put line 2 in bg fld "Readings" into baseline
-- convert baseline from mV to binary
get line 4 in bg fld "HParams" -- full scale and units
put item 1 in it into bottomY
put item 2 in it into topY
put translateToBinary(baseline,bottomY,topY,resultType)
into binBase
-- now compute the absolute area, result goes into 'it'
get
AbsAreaWave("theWave",sampleInterval,startTime,endTime,
binBase)

21

XCMDs and XFCNs

AcqMean

Type: XCMD

Syntax:
AcqMean sampleInterval,npoints,startMUX,endMUX,gList

Description:
Reads npoints samples from each A/D channel (startMUX to endMUX
inclusive) at a sample rate of sampleInterval µs/channel, and computes mean
of each channel. gList contains a comma-delimited list of global names where
means will be returned. Useful for measuring DC baselines before an event, or
averaging a series of samples (rather than a single reading) for a more reliable DC
reading.

Result:
Returns real values formatted according to XYCoordYformat global. These are
raw means which must be corrected for full-scale range, A/D coding, amplifier
gain, etc...

Example:
global sampleInterval,npoints,FSTable,theMean,ADCbits
put 0 into startMUX -- the A/D channel
put startMUX into endMUX -- just one channel
AcqMean
sampleInterval,npoints,startMUX,endMUX,"theMean"
-- translate into mV
put item 1 in line (startMUX+1) in FSTable into
minFullScale
put item 2 in line (startMUX+1) in FSTable into
maxFullScale
get
translateToReal(theMean,minFullScale,maxFullScale,ADCbi
ts)

22

XCMDs and XFCNs

AcqWave

Type: XCMD

Syntax:
AcqWave sampleInterval,npoints,startMUX,endMUX,gList

Description:
The simplest of the signal acquisition XCMDs. Reads npoints samples from
each A/D channel (startMUX to endMUX inclusive) at a sample rate of
sampleInterval µs/channel. gList contains a comma-delimited list of
global names where waves will be returned. See Fig. 11-1 and the discussion on
acquisition timing and sampling multiple channels earlier in this chapter.

Result:
Returns compressed waves in globals whose names are passed as a comma-
delimited list in gList.

Example:
global sampleInterval,npoints,FSTable
-- globals to receive digitized data
global w0,w1,w2,w3,w4,w5,w6,w7

put 0 into startMUX
put 7 into endMUX
-- put global NAMES into a list
put "w0,w1,w2,w3,w4,w5,w6,w7" into gList
put endMux-startMUX+1 into nChannels
-- adjust sample interval for number of channels
put sampleInterval*nChannels into effectiveSint
AcqWave effectiveSint,npoints,startMUX,endMUX,gList

23

XCMDs and XFCNs

AcqWaveDAC

Type: XCMD

Syntax:
AcqWaveDAC sampleInterval,npoints,startMUX,endMUX,
DACchannel,DACpre,DACpulse,DACpost,prePulse,pulseWidth,
gList

Description:
Reads npoints samples from each A/D channel (startMUX to endMUX
inclusive) at a sample rate of sampleInterval µs/channel. gList contains a
comma-delimited list of global names where waves will be returned.
Simultaneously steps one D/A channel (DACchannel: 0 or 1) to one or two
analog levels as shown in Fig. 11-2. Analog levels (DACpre, DACpulse,
DACpost) are in mV. prePulse and pulseWidth are in µs and must be
positive and integral multiples of sampleInterval. If prePulse is zero,
only a single pulse will be generated. The DACpost analog level will persist after
the XCMD returns, until a new level is written to that D/A channel. The total pre-
pulse and pulse time must be less than the length of the acquisition (i.e.
prePulse+pulseWidth < sampleInterval*npoints). Needs globals
DACmin, DACmax and DACbits to automatically translate mV to a valid binary
count (these are initialized at start-up). You cannot generate a pre-pulse and delay
the start of the acquisition until the onset of the pulse. Instead, acquire the entire
signal, then use the 'Trim' command to remove the unwanted segment acquired
during the pre-pulse time.

DACpre

DACpost

DACpulse

prePulse(µs) pulseWidth(µs)

pre-pulse pulse

first sample

24

XCMDs and XFCNs

Fig. 11-2: Relationship between analog pulses and sample acquisition.

25

XCMDs and XFCNs

Result:
Returns compressed waves in globals whose names are passed as a comma-delimited list in gList.

Example:
global sampleInterval,npoints,FSTable,DACGainTable
global theWave

put 0 into DACchannel -- the D/A channel, 0 or 1
put -5000 into DACpre -- analog level of pre-pulse (in mV)
put 500 into prePulse -- duration of pre-pulse (in µs)
put 7000 into DACpulse -- analog level during pulse (in mV)
put 500 into pulseWidth -- duration of pulseWidth (in µs)
put 0 into DACpost -- final analog level after pulse (in mV)
put 0 into startMUX -- the selected A/D channel
put startMUX into endMUX -- a single channel only

-- adjust pulseWidth and prePulse to multiples of sampleInterval
put round(pulseWidth/sampleInterval)*sampleInterval into pulseWidth
put round(prePulse/sampleInterval)*sampleInterval into prePulse
-- adjust DAC levels w.r.t external DAC gain
get line (DACchannel+1) in DACGainTable
put round(DACpre/it) into adjDACpre
put round(DACpulse/it) into adjDACpulse
put round(DACpost/it) into adjDACpost
-- acquire the wave
AcqWaveDAC sampleInterval, npoints, startMUX, endMUX,¬
DACchannel,adjDACpre,adjDACpulse,adjDACpost,¬
prePulse,pulseWidth,"theWave"

26

XCMDs and XFCNs

AcqWaveOnTTL

Type: XCMD

Syntax:
AcqWaveOnTTL sampleInterval,npoints,startMUX,endMUX,
TTLbit,edge,timeout,gList

Description:
Reads npoints samples from each A/D channel (startMUX to endMUX
inclusive) at a sample rate of sampleInterval µs/channel. gList contains a
comma-delimited list of global names where waves will be returned. Begins
acquisition on a lo-to-hi (edge = 1) or hi-to-lo (edge = 0) transition of bit
TTLbit of digital input port. Returns with silent XCMDErr = 17 if required
edge was not detected within approximately timeout (integer: 1 to 800) seconds.
Used to synchronize acquisition with an external TTL trigger or event detector.

Trigger uncertainty with respect to the TTL edge: ≈ 2µs on a Mac II, ≈1.3 µs on
Mac IIci, ≈0.8 µs on Mac IIfx. Trigger pulse must be at least as wide as the
uncertainty or the edge might be missed.
The Mac will be completely locked out during the time the XCMD waits for an
edge (for a maximum of timeout seconds).

Result:
Returns compressed waves in globals whose names are passed as a comma-
delimited list in gList.

Example:
global XCMDErr
global sampleInterval,npoints
global theWave
put 0 into TTLbit
put 0 into edge -- trigger on rising (1) or falling
(0) edge
put 2 into timeout -- quit if no edge detected after 2
sec
put 0 into startMUX -- the A/D channel

27

XCMDs and XFCNs

put startMUX into endMUX -- a single channel only
-- acquire the wave
AcqWaveOnTTL sampleInterval,npoints,startMUX,endMUX,¬
TTLbit,edge,timeout,"theWave"

28

XCMDs and XFCNs

AcqWavePreTTL

Type: XCMD

Syntax:
AcqWavePreTTL sampleInterval,npoints,startMUX,endMUX,
TTLbit,edge,preTrig,timeout,gList

Description:
Similar to AcqWaveOnTTL but implements pre-triggering, capturing a segment
before the edge transition. Reads npoints samples from each A/D channel
(startMUX to endMUX inclusive) at a sample rate of sampleInterval
µs/channel. gList contains a comma-delimited list of global names where waves
will be returned. Captures a segment preTrig µs long before a lo-to-hi (edge =
1) or hi-to-lo (edge = 0) transition of bit TTLbit of digital input port. preTrig
must be an integral multiple of sampleInterval. Returns with silent
XCMDErr = 17 if required edge was not detected within approximately
timeout (integer: 1 to 800) seconds. Used as a pre-trigger function to capture
signals preceding a trigger or event.

Trigger uncertainty: ≈ 2µs on a Mac II, ≈1.3 µs on Mac IIci, ≈0.8 µs on Mac IIfx.
Trigger pulse must be at least as wide as uncertainty or edge might be undetected.

The Mac will be completely locked out during the time the XCMD waits for an
edge (for a maximum of timeout seconds).

Result:
Returns compressed waves in globals whose names are passed as a comma-
delimited list in gList.

29

XCMDs and XFCNs

Example:
global XCMDErr
global sampleInterval,npoints
global theWave
put 0 into TTLbit
put 0 into edge -- trigger on rising (1) or falling
(0) edge
put 2 into timeout -- quit if no edge detected after
2 sec
put 500 into preTrig -- acquire this many µs before
trigger edge
put 0 into startMUX -- the A/D channel
put startMUX into endMUX -- a single channel only
-- adjust preTrig to multiple of sampleInterval
put round(preTrig/sampleInterval)*sampleInterval into
preTrig
-- acquire the wave
AcqWavePreTTL
sampleInterval,npoints,startMUX,endMUX,TTLbit,edge,¬
preTrig,timeout,"theWave"

30

XCMDs and XFCNs

AcqWaveThresh

Type: XCMD

Syntax:
AcqWaveThresh sampleInterval,npoints,startMUX,endMUX,
thresh,slope,timeout,gList

Description:
Reads npoints samples from each A/D channel (startMUX to endMUX
inclusive) at a sample rate of sampleInterval µs/channel. gList contains a
comma-delimited list of global names where waves will be returned. Begins
acquisition when signal at A/D channel startMUX crosses analog threshold
thresh (binary count) (slope = 1 for positive crossing, slope = 0 for negative
crossing). Hysteresis of 50 integer counts is built in to avoid false triggering when
signal crosses threshold with opposite slope. Returns with silent XCMDErr = 17
if threshold crossing was not detected within approximately timeout (integer: 1
to 800) seconds. Useful for triggering on a predetermined point on a signal,
similar to the trigger level of an oscilloscope.

Threshold must be translated to a binary count with respect to full-scale range and
binary coding (see example). The Mac will be completely locked out during the
time the XCMD waits for an edge (for a maximum of timeout seconds).

Result:
Returns compressed waves in globals whose names are passed as a comma-
delimited list in gList.

31

XCMDs and XFCNs

Example:
global sampleInterval,npoints,FSTable
global theWave,ADCbits
put -500 into triggerLevel -- threshold in mV
put 1 into slope -- +ve (1) or -ve (0) threshold
crossing
put 1 into timeout -- time out limit in seconds
put 0 into startMUX -- the selected channel
put startMUX into endMUX
-- translate threshold to binary count
put item 1 in line (startMUX+1) in FSTable into
minFullScale
put item 2 in line (startMUX+1) in FSTable into
maxFullScale
put translateToBinary(triggerLevel,minFullScale,¬
maxFullScale,ADCbits) into binThresh
AcqWaveThresh sampleInterval,npoints,startMUX,¬
endMUX,binThresh,slope,timeout,"theWave"

32

XCMDs and XFCNs

AcqWaveTimer

Type: XFCN

Syntax:
AcqWaveTimer (sampleInterval,npoints,startMUX,endMUX,
timerChannel,preTrig,pulseWidth,gList)

Description:
Reads npoints samples from each A/D channel (startMUX to endMUX
inclusive) at a sample rate of sampleInterval µs/channel. gList contains a
comma-delimited list of global names where waves will be returned. A positive
TTL pulse is generated at one of the counter/timer chip outputs (timerChannel:
1 to 4), preTrig µs after beginning acquisition; pulse lasts for pulseWidth µs
as shown in Fig. 11-3. preTrig and pulseWidth are in µs, must be positive
integers, but need not be multiples of sampleInterval (see AcqWaveTTL in
contrast). If preTrig is zero, pulse onset will coincide with first sample.
preTrig must be less than the length of the acquisition (i.e. preTrig <
sampleInterval*npoints), but pulse width can extend beyond sample
window. If pulseWidth = 0, no pulse is generated and acquisition proceeds as
in AcqWave. Used to trigger an external device at the same time or just after
starting the acquisition.

timer output

preTrig(µs) pulseWidth(µs)

first sample

Fig. 11-3: Relationship between digital pulse and sample acquisition.

Result:
Returns compressed waves in globals whose names are passed as a comma-delimited list in gList. Because the

AM9513 timer chip has 16 bit counters, the resolution of the pre-triggering time and pulse width may be limited.
The result of this XFCN contains three comma delimited items representing the actual preTrig and pulseWidth times
that were generated, and the possible resolution for these times given the present parameters (all in

33

XCMDs and XFCNs

µs). If the actual parameters differ from those passed in the parameter list, a silent error 60 is returned in
XCMDErr global.

Example 1:
global sampleInterval,npoints,theWave
put 1 into timerChannel -- timer channel generating pulse (1-4)
put 500 into preTrig -- segment acquired before pulse (in µs)
put 1000 into pulseWidth -- duration of pulseWidth (in µs)
put 0 into startMUX -- the selected channel
put startMUX into endMUX -- a single channel only
put AcqWaveTimer (sampleInterval,npoints,startMUX,endMUX,¬
timerChannel,preTrig,pulseWidth,"theWave")

This code segment would write '500,1000,1' in the message box, and XCMDErr would be 0 indicating that the
actual pre-trigger time and pulse width were exactly as you requested. Furthermore, item 3 in the result tells you
that you can set each of these two parameters with a resolution of 1 µs.

Example 2:
global sampleInterval,npoints,theWave
put 1 into timerChannel -- timer channel generating pulse (1-4)
put 48993 into preTrig -- segment acquired before pulse (in µs)
put 100002 into pulseWidth -- duration of pulseWidth (in µs)
put 0 into startMUX -- the selected channel
put startMUX into endMUX -- a single channel only
put AcqWaveTimer (sampleInterval,npoints,startMUX,endMUX,¬
timerChannel,preTrig,pulseWidth,"theWave")

This example would put '48994,100002,2' in the message box, and XCMDErr would be 60 indicating that the
possible resolution for such long times was 2 µs. The actual pre-trigger time was 48994 (vs. the requested 48993),
but the pulse width was accurate. As you can see the percent errors are very small, and the timer chip will generate
pulses with an accuracy of ±200 ns of that reported by the value of the XFCN.

34

XCMDs and XFCNs

AcqWaveTTL

Type: XCMD

Syntax:
AcqWaveTTL sampleInterval,npoints,startMUX,endMUX,
TTLbit,preTrig,pulseWidth,gList

Description:
Reads npoints samples from each A/D channel (startMUX to endMUX
inclusive) at a sample rate of sampleInterval µs/channel. gList contains a
comma-delimited list of global names where waves will be returned. Toggles one
TTL output bit (TTLbit: 0 to 7) preTrig µs after beginning acquisition; toggles
same bit again after pulseWidth µs as shown in Fig. 11-4. preTrig and
pulseWidth are in µs and must be positive and integral multiples of
sampleInterval. If preTrig is zero, pulse onset will coincide with first
sample. The total pre-triggering and pulse time must be less than the length of the
acquisition (i.e. preTrig+pulseWidth < sampleInterval*npoints).

Used to trigger an external device at the same time or just after starting the
acquisition. Because the output bit is toggled, the polarity of the TTL pulse is
determined by the starting level; use the 'WriteTTLbit' command to preset the bit
level. We recommend using AcqWaveTimer instead, unless you have reason not
to.

TTL output bit

preTrig(µs) pulseWidth(µs)

first sample

Fig. 11-4: Relationship between digital pulse and sample acquisition.

Result:
Returns compressed waves in globals whose names are passed as a comma-delimited list in gList.

35

XCMDs and XFCNs

Example:
global sampleInterval,npoints,FSTable,theWave
put 0 into TTLbit -- which TTL output do you want to pulse (0-7)
put 500 into preTrig -- segment acquired before pulse (in µs)
put 1000 into pulseWidth -- duration of pulseWidth (in µs)
put 0 into startMUX -- the selected channel
put startMUX into endMUX -- a single channel only
-- adjust pulseWidth and preTrig to multiples of sampleInterval
put round(pulseWidth/sampleInterval)*sampleInterval into pulseWidth
put round(preTrig/sampleInterval)*sampleInterval into preTrig
-- acquire the wave
AcqWaveTTL sampleInterval,npoints,startMUX,endMUX,TTLbit,preTrig,¬
pulseWidth,"theWave"

36

XCMDs and XFCNs

AddWaveK

Type: XFCN

Syntax:
AddWaveK ("theWave",K,resultType)

Description:
Adds a constant K (need not be an integer) to every point in global variable
theWave (double quotes are included to remind you to pass the name of the
global). resultType selects the data type of the result (e.g. -12 for a signed 12-
bit integer wave, "F" for a single-precision floating point wave). Passing
resultType = 0 will return same type as theWave. If an integer wave is
requested by resultType and some elements are out of range, a silent overflow
error (XCMDErr = 42) is returned and the out-of-range elements are clipped to
the maximum or minimum allowable value. Useful for offsetting waves or
removing DC components. Passing K = 0 is useful for changing a wave from one
data type to another. Pass a negative value in K to subtract a constant.

Result:
Returns compressed wave as value of XFCN.

Example:
global theWave
put 100 into K
put 0 into resultType
-- add 100 to every point in theWave, return same data
type
put AddWaveK ("theWave",K,resultType) into theWave
put 0 into K
put "F" into resultType
-- convert theWave to a floating point type
put AddWaveK ("theWave",K,resultType) into theWave

37

XCMDs and XFCNs

AddWaves

Type: XFCN

Syntax:
AddWaves ("wave1","wave2",resultType)

Description:
Adds two waves together, point by point:

yn = yn,wave1 + yn,wave2

If number of points in both waves is different, stops summing when reaches the end of the shorter wave. Double
quotes are included to remind you to pass the names of the globals containing the waves. resultType selects the

data type of the result (e.g. -12 for a signed 12-bit integer wave, "F" for a single-precision floating point wave).
Passing resultType = 0 will return same type as wave1. If an integer wave is requested by resultType and

some elements are out of range, a silent overflow error (XCMDErr = 42) is returned and the out-of-range elements
are clipped to the maximum or minimum allowable value.

Result:
Returns compressed wave as value of XFCN.

Example:
global wave1,wave2
put 0 into resultType
-- add wave1 and wave2, result goes in wave1
put AddWaves ("wave1","wave2",resultType) into wave1
put "F" into resultType
-- add wave1 and wave2, floating point result goes in theWave
-- note that theWave need not be a global
put AddWaves ("wave1","wave2",resultType) into theWave

38

XCMDs and XFCNs

AmplSpectrum

Type: XFCN

Syntax:
AmplSpectrum ("theWave",dB,floor)

Description:
Computes frequency (amplitude) spectrum of wave in global theWave (double
quotes are included to remind you to pass the name of the global containing the
wave):

Re Im2 2+ nny =n

where:
yn = nth frequency component
Ren = real part of nth element after FFT
Imn = imaginary part of nth element after FFT

The number of points in theWave must be an integral power of 2 for the FFT. If
db = TRUE, converts spectrum to a log scale and returns elements in dB
normalized to maximum value (= 0 dB). Values less than floor will be clipped
to floor; this is to avoid very large negative components with a log scale. If
floor = 0, small values are not clipped and 0 elements in spectrum (which should
be -∞ on a log scale) are returned as -3.403E+38 (the smallest single precision
floating point number, because HyperCard does not recognize the -INF symbol).
dB values are computed as follows:

dB = 20 log
yn

y
max

()
Result:
Returns compressed wave as value of XFCN. Result is always a floating point
wave (type "F").

39

XCMDs and XFCNs

Example:
global w0,theWave
put TRUE into dB -- display on a log scale,
normalized to 0 dB
put -80 into floor -- clip very small components to -80
dB
put AmplSpectrum ("theWave",dB,floor) into w0

40

XCMDs and XFCNs

AreaWave

Type: XFCN

Syntax:
AreaWave
("theWave",sampleInterval,startTime,endTime,baseline)

Description:
Computes the net area under wave, between startTime and endTime µs
included, with respect to baseline. Mathematically:

sampleInterval Σ
n=0

npoints-1

 y - baselinen

where:
npoints is the number of points in the wave
yn is the value of the nth point
baseline and sampleInterval are parameters

"theWave" is the name of the global containing the wave (double quotes are
included to remind you to pass the wave by name, not by value).
sampleInterval is the original sampling interval in µs, startTime and
endTime define the segment of the wave to be summed. Passing -1 in endTime
tells the XFCN to continue to the last point. For example, pass startTime =
0,endTime = -1 to compute area of entire wave, or startTime,endTime = -1
to compute area from startTime to end of wave.

Result:
Returns a real value with dimensions µs x vertical unit, formatted according to
XYCoordYformat global. This is a raw area i.e. a sum of integer or floating point
values, which must be corrected for full-scale range, A/D coding, amplifier gain,
etc...

41

XCMDs and XFCNs

Example:
This example assumes that a wave has been previously stored in a trace card along
with its parameters in the 'HParams' field:

-- the original sampling rate
put line 3 in bg fld "HParams" into sampleInterval
-- copy the previously acquired wave into 'theWave'
put bg fld "data" into theWave
-- what's the data type?
put getWaveType(theWave) into resultType
-- copy the previously measured baseline
put line 2 in bg fld "Readings" into baseline
-- convert baseline from mV to binary
get line 4 in bg fld "HParams" -- full scale and units
put item 1 in it into bottomY
put item 2 in it into topY
put translateToBinary(baseline,bottomY,topY,resultType)
into binBase
-- now compute the area, result goes into 'it'
get
AreaWave("theWave",sampleInterval,startTime,endTime,bin
Base)

42

XCMDs and XFCNs

AvgWaveTimer

Type: XFCN

Syntax:
AvgWaveTimer (sampleInterval,npoints,startMUX,endMUX,
timerChannel,preTrig,pulseWidth,gList,nAvg,period,lock)

Description:
This XFCN averages a number acquisitions. Reads npoints samples from each
A/D channel (startMUX to endMUX inclusive) at a sample rate of
sampleInterval µs/channel. gList contains a comma-delimited list of
global names where waves will be returned. A positive TTL pulse is generated at
one of the counter/timer chip outputs (timerChannel: 1 to 3), preTrig µs
after beginning acquisition; pulse lasts for pulseWidth µs as shown in Fig. 11-5.
preTrig and pulseWidth are in µs, must be positive integers, but need not be
multiples of sampleInterval (see AcqWaveTTL in contrast). If preTrig is
zero, pulse onset will coincide with first sample. preTrig must be less than the
length of each acquisition (i.e. preTrig < sampleInterval*npoints), but
pulse width can extend beyond sample window. If pulseWidth = 0, no pulse is
generated. nAvg (must be ≤ 32767) cycles are averaged with a period of period
µs. If lock is TRUE, then interrupts are disabled and the Mac will be locked out
for the entire averaging period. Period jitter will be about 1 µs, as measured on a
Mac IIfx. If lock is FALSE then acquisition can be aborted prematurely with
command-period (a silent error 64 is returned in XCMDErr), and waves already
acquired will be returned correctly. However, period can jitter by as much as ±500
µs. Set lock to TRUE if you need very precise timing of the period.

Timer channels 4 and 5 are used to time the cycles and A/D sampling. There is a
software overhead between cycles used to accumulate the most recent wave and
reset the timers. It can be estimated as ≈ npoints*3.5µs + 70µs on a Mac IIfx
with lock = TRUE, and ≈ npoints*3.5µs + 300µs with lock = FALSE.
Slower Macs will have proportionally greater overheads depending on their clock
speed. Therefore, the minimum reliable period is ≥
npoints*sampleInterval (sample window time) + npoints*3.5µs + 70µs
(overhead) with lock = TRUE. The XFCN will not signal an error if you violate
the overhead, so be careful, or your data may be inaccurate.
Use this XFCN to trigger an external device at the same time or just after starting

43

XCMDs and XFCNs

the acquisition.

44

XCMDs and XFCNs

Timer
output

preTrig pulseWidth

first sample
cycle n

first sample
cycle n+1

period

overhead

Fig. 11-5: Relationship between digital pulses, sample acquisition and averaging period. There is a
software overhead between averaging cycles.

Result:
Returns compressed waves in globals whose names are passed as a comma-delimited list in gList. Because the

AM9513 timer chip has 16 bit counters, the resolution of the pre-triggering time and pulse width may be limited.
The result of this XFCN contains two lines (delimited by carriage returns): the first contains a single item
representing the actual number of cycles averaged. This may be less than nAvg if user typed command-period to

abort. The second line contains three comma delimited items representing the actual preTrig and pulseWidth times
that were generated, and the possible resolution for these times given the present parameters (all in µs). If the actual
parameters differ from those passed in the parameter list, a silent error 60 is returned in XCMDErr global.

45

XCMDs and XFCNs

Example:
global sampleInterval,npoints,theWave
put 1 into timerChannel -- timer channel generating pulse (1-3)
put 500 into preTrig -- segment acquired before pulse (in µs)
put 1000 into pulseWidth -- duration of pulseWidth (in µs)
put 50 into nAvg -- number of waves to be averaged
put 100000 into period -- averaging period (in µs)
put FALSE into lock -- allow cmd-period to abort the run
put 0 into startMUX -- the selected A/D channel
put startMUX into endMUX -- a single channel only
get AvgWaveTimer (sampleInterval,npoints,startMUX,endMUX,¬
timerChannel,preTrig,pulseWidth,"theWave",nAvg,period,lock)

This code segment will average 50 waves from A/D channel 0, at 100 ms intervals. The timing would be as follows:

Timer
output

500µs 1000 µs

first sample
cycle n

first sample cycle n+1,
for a total of 50 cycles

100 ms

The variable it will contain (assuming the user did not press command-period):

50
500,1000,1

and XCMDErr would be 0 indicating that 50 cycles were averaged, and the actual pre-trigger time and pulseWidth
were exactly as requested. Furthermore, the result tells you that you can set each of these two parameters with a
resolution of 1 µs. See AcqWaveTimer for an example of what happens when a pulse could not be generated

exactly as you requested.

46

XCMDs and XFCNs

AvgWaveTTL

Type: XFCN

Syntax:
AvgWaveTTL
(sampleInterval,npoints,startMUX,endMUX,TTLbit,
preTrig,pulseWidth,gList,nAvg,period,lock)

Description:
This XFCN averages a number acquisitions. Reads npoints samples from each
A/D channel (startMUX to endMUX inclusive) at a sample rate of
sampleInterval µs/channel. gList contains a comma-delimited list of
global names where waves will be returned. Toggles one TTL output bit
(TTLbit: 0 to 7) preTrig µs after beginning acquisition; toggles same bit again
after pulseWidth µs as shown in Fig. 11-6. preTrig and pulseWidth are
in µs and must be positive and integral multiples of sampleInterval. If
preTrig is zero, pulse onset will coincide with first sample. The total pre-
triggering and pulse time must be less than the length of the acquisition (i.e.
preTrig+pulseWidth < sampleInterval*npoints). If pulseWidth
= 0, no pulse is generated. nAvg (must be ≤ 32767) cycles are averaged with a
period of period µs. Because timer channel 4 is used to measure the time
between cycles, period need not be a multiple of sampleInterval. If lock
is TRUE, then interrupts are disabled and the Mac will be locked out for the entire
averaging period. Period jitter is ≈ 1µs measured on a Mac IIfx. If lock is
FALSE then acquisition can be aborted prematurely with command-period (a silent
error 64 is returned in XCMDErr), and waves already acquired will be returned
correctly. However, period can jitter by as much as ±500 µs. Set lock to TRUE
if you need very precise timing of the period.

Timer channels 4 and 5 are used to time the cycles and A/D sampling. There is a
software overhead between cycles used to accumulate the most recent wave and
reset the timers. It can be estimated as ≈ npoints*3.5µs + 70µs on a Mac IIfx
with lock = TRUE, and ≈ npoints*3.5µs + 300µs with lock = FALSE.
Slower Macs will have proportionally greater overheads depending on their clock
speed. Therefore, the minimum reliable period is ≥
npoints*sampleInterval (sample window time) + npoints*3.5µs + 70µs
(overhead) with lock = TRUE. The XFCN will not signal an error if you violate

47

XCMDs and XFCNs

the overhead, so be careful, or your data may be inaccurate.
Because the output bit is toggled, the polarity of the TTL pulse is determined by
the starting level; use the 'WriteTTLbit' command to preset the bit level. We
recommend using AvgWaveTimer instead, unless you have reason not to.

48

XCMDs and XFCNs

Timer
output

preTrig pulseWidth

first sample
cycle n

first sample
cycle n+1

period

overhead

Fig. 11-6: Relationship between digital pulses, sample acquisition and averaging period.

Result:
Returns compressed waves in globals whose names are passed as a comma-delimited list in gList. The result of
this XFCN contains the actual number of cycles averaged. This may be less than nAvg if user typed command-

period to abort.

49

XCMDs and XFCNs

Example:
global npoints,theWave
put 7 into sampleInterval
put 0 into TTLbit -- which TTL output do you want to pulse (0-7)
put 500 into preTrig -- segment acquired before pulse (in µs)
put 1000 into pulseWidth -- duration of pulseWidth (in µs)
put 50 into nAvg -- number of waves to be averaged
put 100000 into period -- averaging period (in µs)
put FALSE into lock -- allow cmd-period to abort the run
put 0 into startMUX -- the selected channel
put startMUX into endMUX -- a single channel only
-- adjust pulseWidth and preTrig to multiples of sampleInterval
put round(pulseWidth/sampleInterval)*sampleInterval into pulseWidth
put round(preTrig/sampleInterval)*sampleInterval into preTrig
put AvgWaveTTL (sampleInterval,npoints,startMUX,endMUX,¬
TTLbit,preTrig,pulseWidth,"theWave",nAvg,period,lock)

This code segment will average 50 waves from A/D channel 0, at 100 ms intervals. The timing would be as follows
(note that the pre-triggering time and pulse width had to be rounded to the nearest multiple of sampleInterval):

Timer
output

497µs 1001 µs

first sample
cycle n

first sample cycle n+1,
for a total of 50 cycles

100 ms

The message box will read 50 (assuming the user did not press command-period).

50

XCMDs and XFCNs

CheckFPU

Type: XFCN

Syntax:
CheckFPU ()

Description:
This XFCN checks if the Mac has a 68881/882 floating point unit. Use this XFCN
to check for a math coprocessor before calling a routine that requires one.

Technical note:
This XFCN calls the SysEnvirons toolbox trap to check if the machine has an FPU.

Result:
Returns TRUE if a 68881/882 floating point unit is installed, otherwise it returns FALSE.

51

XCMDs and XFCNs

CommaToTab

Type: XFCN

Syntax:
CommaToTab (theData)

Description:
This XFCN converts a variable (theData) from comma-delimited to tab-
delimited format. Note that the variable theData is passed by value (no quotes),
and not by name.
Use this XFCN to convert HyperCard lists and tables, which are comma-delimited,
to standard Mac export format (tab-delimited) for pasting into spreadsheets, etc.
You will commonly call PutScrap next to copy the contents to the clipboard.

Result:
Returns as the value of the function, the data with all commas changed to tab
characters. Existing tabs are left unchanged.

Example:
-- make a table
put "1,2,3" & return into x
put "4,5,6" & return after x
put CommaToTab(x) into x -- convert to tab-delimited
format
PutScrap x -- copy to clipboard

x is passed to CommaToTab by value, therefore it is not enclosed in double
quotes. The contents of the clipboard will be:

1 2 3
4 5 6

where each item in a row is separated by a tab character.

52

XCMDs and XFCNs

ConvolveWave

Type: XFCN

Syntax:
ConvolveWave ("theWave", "FIRcoeffs", resultType)

Description:
Implements a finite impulse response (non-recursive) digital filter. The wave to be
filtered is passed in global theWave, and the coefficients describing the filter are
passed in global FIRCoeffs (double quotes are included to remind you to pass
the names of the globals). Unlike FFT-based filters, the number of points in the
wave need not be an integral power of two. This XFCN differs from
FilterWaveFIR in that it accepts filter coefficients from DesignFIRlo XFCN, rather
than a complete set of coefficients generated externally. Use ConvolveWave only
with filters generated by DesignFIRlo (see the description for details).

resultType selects the data type of the result (e.g. -12 for a signed 12-bit
integer wave, "F" for a single-precision floating point wave). Passing
resultType = 0 will return same type as theWave. If an integer wave is
requested by resultType and some elements are out of range, a silent overflow
error (XCMDErr = 42) is returned and the out-of-range elements are clipped to
the maximum or minimum allowable value.

Result:
Returns filtered, compressed wave as the value of the XFCN. The filtered wave is
shifted left by n/2 samples (where n is the number of filter coefficients) so that the
original and filtered waves are in phase (FIR filtering inherently shifts the output
right by n/2 samples). Also, the first and last n/2 points are returned unfiltered,
because there are n/2 points missing before the start of the wave, and after the end
of the wave, required to compute the output.

53

XCMDs and XFCNs

Example:
You have a digitized signal sampled at 100 kHz and you want to remove high
frequency noise by low-pass filtering the wave at 12 kHz. The filter must roll off
so that all components are attenuated to less than 100 dB above 35 kHz. You must
first design the filter by calling DesignFIRlo with the appropriate parameters,
then filter your signal using ConvolveWave:

global theWave,FIRCoeffs,w0
put 0 into resultType -- return same type of wave
-- filter the wave, and return result in same global
put 12000 into fpass -- in Hz
put 35000 into fstop
put 100 into dB
put 10 into sampleInterval -- 100kHz is 10µs sample interval
-- design filter coeffs
put DesignFIRlo(fpass,fstop,dB,sampleInterval) into FIRCoeffs
-- filter it, result into global w0
put ConvolveWave ("theWave", "FIRCoeffs", resultType) into w0

For lo-pass filtering, DesignFIRlo and ConvolveWave are the most convenient and efficient (in
terms of computation speed) way to filter signal in WaveTrak.

54

XCMDs and XFCNs

CopyBigPICT

Type: XFCN

Syntax:
CopyBigPICT
("theWave",nVertex,leftX,rightX,topY,bottomY,
baseline,Xcal,Ycal,Xunit,Yunit)

Description:
This XFCN converts the wave stored in global theWave into a large, high-
resolution PICT (graphics object) and copies it to the clipboard. The number of
points in the resulting wave will be nVertex. nVertex will be limited to the
number of points in the wave or 4096, whichever is less.
leftX,rightX,topY,bottomY define the wave in real units; see the
discussion on wave descriptors in the Scripting chapter. These parameters are used
to properly scale the calibration marks, which are generated as an L-shaped
polygon, Ycal units high and Xcal units wide. The units of Xcal must be the
same as leftX and rightX; similarly, Ycal is defined in the same units as
topY and bottomY. The actual names of the units (must be < 32 characters in
length each) are passed in Xunit (e.g. "µs") and Yunit (e.g. "mV"), and will be
drawn next to the calibration marks. Pass zero to one or both calibration
parameters to suppress that limb of the mark. If bottomY ≤ baseline ≤
topY, a horizontal baseline is drawn for reference. Pass a value beyond the
bottomY-topY range to suppress it.
Waves of type float are treated somewhat differently. They are always translated
into a PICT 4096 points tall, and scaled so that the maximum and minimum values
in the wave will span this size. The topY and bottomY parameters are used only
to place the baseline and scale the calibration marks.

The resulting large graphic can be scaled down in a object-oriented graphics
program to the required size, and it will maintain full resolution when printed. The
menu item 'Copy as Big PICT' uses this XFCN; see the chapter on WaveTrak
menus for a complete description of how to export waves at high resolution.

55

XCMDs and XFCNs

Technical Note:

CopyBigPICT translates the wave into a QuickDraw polygon containing nvertex vertices. The

maximum size of the polygon is 4096 QuickDraw points, which, when scaled down, gives you control of
every dot on a page at the 300 dpi LaserWriter resolution. If nVertex > 400, the polygon is split up

into several contiguous polygons, each consisting of 400 points to avoid generating a PostScript error.

Result:
Translates the wave into a large graphics object and copies it to the clipboard. The value of the XFCN is the actual
number of vertices in the polygon, which may be less than nVertex.

56

XCMDs and XFCNs

Example:
This is an example of what you would get if you translated the sample sine wave in the first trace card using
CopyBigPICT, pasted it into Canvas 2.1, and scaled it down. The code example assumes that all wave descriptors

have been initialized when you opened the trace card:

global theWave,leftX, rightX, topY, bottomY, baseline
put 4096 into nVertex -- max no. of vertices/wave
put 5000 into Xcal -- 5000 µs = 5 ms cal mark
put 1000 into Ycal -- 1000 mV = 1 volt cal mark
put "µs" into Xunit
put "mV" into Yunit
get CopyBigPICT ("theWave",nVertex,leftX,rightX,topY,bottomY,¬
baseline,Xcal,Ycal,Xunit,Yunit)
put it -- result to message box

Pasting into Canvas and scaling down:

1000 mV
5000 µs

Note that maximum resolution is maintained, and the lines are drawn as hairlines because the pen size was scaled
down as well (a small amount of noise was added to better illustrate the high resolution capability of this XFCN).
The message box will read 2048, the number of points in the original wave.

57

XCMDs and XFCNs

CopyPICT

Type: XCMD

Syntax:
CopyPICT "theWave",boundRect,leftX,rightX,topY,bottomY,
baseline,Xcal,Ycal,Xunit,Yunit

Description:
This XCMD converts the wave stored in global theWave into a low resolution 72
dpi PICT and copies it to the clipboard. The size of the wave in the PICT is
determined by the rectangle, boundRect. You can pass any rectangle in
boundRect to determine the final frame for your wave. The actual size of the
PICT will be horizontally larger than boundRect by the size of the calibration
marks. leftX,rightX,topY,bottomY define the wave in real units; see the
discussion on wave descriptors in the Scripting chapter. These parameters are used
to properly scale the calibration marks, which are generated as an L-shaped
polygon, Ycal units high and Xcal units wide. The units of Xcal must be the
same as leftX and rightX; similarly, Ycal is defined in the same units as
topY and bottomY. The actual names of the units (must be < 32 characters in
length each) are passed in Xunit (e.g. "µs") and Yunit (e.g. "mV"), and will be
drawn next to the calibration marks. Pass zero to one or both calibration
parameters to suppress that limb of the mark. If bottomY ≤ baseline ≤
topY, a horizontal baseline is drawn for reference. Pass a value beyond the
bottomY-topY range to suppress it.
Waves of type float are treated somewhat differently. The PICT is scaled so that
the actual maximum and minimum points in the wave will span the height of
boundRect. The topY and bottomY parameters are used only to place the
baseline and scale the calibration marks.

The menu item 'Copy as PICT' uses this XFCN; see the chapter on WaveTrak
menus for a complete description of how to export waves using this XCMD. Use
this XCMD to generate low resolution representations of your waves for viewing
on the screen, or for rough drafts.

Result:
Translates the wave into a 72 dpi graphics object and copies it to the clipboard.

58

XCMDs and XFCNs

Example:

59

XCMDs and XFCNs

This is an example of what you would get if you translated the sample sine wave in
the first trace card using CopyPICT. The code fragment assumes that all wave
descriptors have been initialized when you opened the trace card:

global theWave,leftX, rightX, topY, bottomY, baseline
put "0,0,300,250" into boundRect --
left,top,right,bottom
put 5000 into Xcal -- 5000 µs = 5 ms cal mark
put 1000 into Ycal -- 1000 mV = 1 volt cal mark
put "µs" into Xunit
put "mV" into Yunit
CopyPICT
"theWave",boundRect,leftX,rightX,topY,bottomY,¬
baseline,Xcal,Ycal,Xunit,Yunit

5000 µs

1000 mV

The same amount of noise was added as in the example for CopyBigPICT to
illustrate the lower resolution of this export mode. boundRect defines a
rectangle 250 points high, but this 12 bit wave is only 133 points high. The
discrepancy is due to the fact that boundRect maps the full scale integer wave
onto the given rectangle. Therefore, only if this 12-bit signed integer wave had
elements spanning the full -2048 to +2047 range, would its size be that of
boundRect, i.e. 250 points high. The present example does not span the full 12
bit range, and so the PICT is proportionally smaller (float waves, on the other
hand, will always be scaled to full height because by definition, there is no full
scale limit for this data type). The horizontal dimension, however, will always be
the size of the horizontal dimension of boundRect. Regardless of the data type
or final size, the calibration marks will always reflect the true dimensions of the
wave.

60

XCMDs and XFCNs

CopyXYTable

Type: XCMD

Syntax:
CopyXYTable "theWave",leftX,rightX,topY,bottomY

Description:
This XCMD converts the wave stored in global theWave into a tab-delimited
ASCII table and copies it to the clipboard. Both X and Y values are converted and
copied. The X values are linearly mapped from their point numbers such that the
first X value will be leftX and the last will be rightX. The XYCoordXformat
global determines the format of the real X values. If you pass zero for both leftX
and rightX, X values will simply be point numbers (i.e. 0, 1, 2 . . npoints-1).
The conversion format will default to "%.0f" i.e. integers with no digits after the
decimal point (see the chapter on WaveTrak globals for an explanation of
conversion formats specified by XYCoordXformat and XYCoordYformat
globals). Y values of integer waves are linearly mapped such that the maximum
value (e.g. 2047 for a signed 12 bit wave) will be topY and minimum value (e.g. -
2048) will be bottomY.

If you pass zero for both topY and bottomY, integer Y values are converted
without scaling with a conversion format of "%.0f" (i.e. you will get integer values
ranging from -2048 to 2047 for a signed 12 bit wave). Because there are no full
scale limits for float waves, Y values are always converted without translation.
The XYCoordYformat global determines the format of the real Y values.

Use this XCMD to export X-Y numerical data for pasting into a spreadsheet or
wave processor like Igor.

Result:
Translates the wave into a tab-delimited table of X-Y data pairs and copies it to the
clipboard.

61

XCMDs and XFCNs

Example:
This is an example of what you would get if you translated the sample sine wave in
the first trace card. The code fragment assumes that all wave descriptors have
been initialized when you opened the trace card:

global theWave,leftX, rightX, topY, bottomY
global XYCoordXformat,XYCoordYformat
-- save globals
put XYCoordXformat into tempX
put XYCoordYformat into tempY
-- 3 digits after the decimal point
put "%.3f" into XYCoordXformat
put "%.3f" into XYCoordYformat
CopyXYtable
"theWave",leftX/1000,rightX/1000,topY/1000,bottomY/1000
-- restore globals
put tempX into XYCoordXformat
put tempY into XYCoordYformat

Note that we elected to convert the X-Y values in ms and volts, rather than µs and
mV, by passing leftX/1000, rightX/1000, topY/1000, bottomY/1000
instead of leftX, rightX, topY, bottomY. To make sure that we get enough
precision, the conversion formats were reset to 3 digits after the decimal point
("%.3f"). Note that we saved, then restored ,the values of XYCoordXformat
and XYCoordYformat globals to avoid interfering with other WaveTrak
functions. The clipboard will contain the following table:

0.000 -0.364
0.025 -0.291
0.050 -0.208

.

.

.
51.150 -0.696
51.175 -0.603

62

XCMDs and XFCNs

CopyYTable

Type: XCMD

Syntax:
CopyYTable "theWave",topY,bottomY

Description:
This XCMD functions exactly like CopyXYTable, except that it only copies a
single column of Y values to the clipboard. CopyYTable converts the wave
stored in global theWave (double quotes are included to remind you to pass the
name of the global) into an ASCII table. Only Y values are converted. Y values of
integer waves are linearly mapped such that the maximum value (e.g. 2047 for a
signed 12 bit wave) will be topY and minimum value (e.g. -2048) will be
bottomY. If you pass zero for both topY and bottomY, integer Y values are
converted without scaling with a conversion format of "%.0f" (i.e. you will get
integer values ranging from -2048 to 2047 for a signed 12 bit wave). Because
there are no full scale limits for float waves, Y values are converted without
translation. The XYCoordYformat global determines the format of the real Y
values.

Use this XCMD to export numerical data for pasting into a spreadsheet or wave
processor like Igor. If you are exporting several waves with the same number of
points and sample interval, use CopyXYTable for the first one, to get a column
of X values, then use CopyYTable for subsequent waves, to export only Y values
and avoid duplicating X values.

Result:
Translates the wave into a column of Y data, and copies it to the clipboard.

63

XCMDs and XFCNs

Example:
This is an example of what you would get if you translated the sample sine wave in
the first trace card. The code fragment assumes that all wave descriptors have
been initialized when you opened the trace card:

global theWave
CopyYTable "theWave",0,0

Here we elected to convert the Y values as raw integers without scaling, by passing
zero for both topY and bottomY. Any conversion format in the
XYCoordYformat global was ignored and defaulted to "%.0f". The clipboard
will contain the following column of data:

-75
-60
-43
 .
 .
 .
-143
-124

64

XCMDs and XFCNs

DACPulse

Type: XFCN

Syntax:
DACPulse
(DACchannel,DACpulse,pulseWidth,DACpost,TTLbit)

Description:
Generates a single analog pulse at one D/A channel (DACchannel: 0 or 1).
Analog voltage will be DACpulse mV during pulse and will last pulseWidth
µs. The D/A output is stepped back to DACpost mV after the pulse. If you have
any external gain or attenuation, DACpulse and DACpost must be adjusted
accordingly (see example below). Frequently it is convenient to trigger another
device such as a scope simultaneously with the pulse. The digital output bit
TTLbit (0 to 7) will be toggled for the duration of the analog pulse. Pass -1 in
TTLbit, or omit this parameter altogether, to suppress digital pulse generation.

Technical note:

This function uses the AM9513 timer number 4 to time the width of the pulse. Because the AM9513 has
16 bit counters, the resolution of longer pulses may be limited (see example). All Macintosh interrupts
are disabled and the Mac is locked during the pulse.

Result:
The value of the XFCN returns a comma-delimited list containing the actual width of the pulse (which may differ
slightly from pulseWidth due to the limited resolution of the AM9513's 16 bit counters), and the possible

resolution of the pulse width given the current parameters. The XCMDErr global will return a silent error 60 if the
actual and requested pulse widths differed.

65

XCMDs and XFCNs

Example:
Fig. 11-7 shows an example of signals that would be generated by the following script (modified from the 'DAC
Pulse' button in the Button Bank):

global DACGainTable -- contains external gain information

put 0 into DACchannel -- the D/A channel to be pulsed (0 or 1)
put 1000 into DACpulse -- the analog level of the pulse (mV)
put 100513 into pulseWidth -- pulse width in µs
put -500 into DACpost -- analog level after pulse
put 0 into TTLbit -- toggle bit number (0-7, -1 for none)

-- adjust DAC levels w.r.t external DAC gain
get line (DACchannel+1) in DACGainTable
put round(DACpulse/it) into adjDACpulse
put round(DACpost/it) into adjDACpost

-- generate the pulse
get DACPulse (DACchannel,adjDACpulse,pulseWidth,adjDACpost,TTLbit)
put it

DACpost

DACpulse

pulseWidth(µs)

D/A channel
0 output

TTL bit 0
output

Fig. 11-7: Example of signals generated by the DACPulse XFCN.

66

XCMDs and XFCNs

Note how the parameters defining the analog levels (DACpulse, DACpost) were adjusted with respect to any
external gain or attenuation (stored in DACGainTable). The message box will read '100514,2' indicating that the

actual pulse width was 100514 instead of 100513 µs because the resolution of pulses this long is limited to 2 µs. As
a percentage of the total pulse width, this limitation is insignificant. XCMDErr is also set to 60 to signal that the
actual and requested pulse widths differed.

67

XCMDs and XFCNs

DesignFIRlo

Type: XFCN

Syntax:
DesignFIRlo (fpass,fstop,dB,sampleInterval)

Description:
Designs a Kaiser-Bessel lo-pass finite impulse response filter. The pass band
extends from zero to fpass Hz. The stop band is defined as the band extending
above fstop (Hz) where all components are attenuated by at least dB decibels
(pass a positive value for dB). Obviously fstop must be greater than fpass.
The sampling interval is passed in sampleInterval (µs, need not be integer).
If sampleInterval is zero, can define pass and stop bands as normalized
frequencies (0 < f < 0.5). The steepness of the filter's roll-off is determined by how
close fpass and fstop are. The closer they are however, the more coefficients will
be required to implement such a filter and the more computation time each filter
operation using ConvolveWave will require.

Result:
Returns an even number of filter coefficients as compressed wave as value of
XFCN, always of type float. Because these filters are symmetrical, returns only
half the total number of coefficients. ConvolveWave XFCN is aware of this
optimization, so pass the coefficient wave generated by DesignFIRlo directly to
ConvolveWave to filter your signal efficiently. See ConvolveWave XFCN for
more details.

68

XCMDs and XFCNs

Example:
You have a digitized signal sampled at 100 kHz and you want to remove high
frequency noise by low-pass filtering the wave at 12 kHz. The filter must roll off
so that all components are attenuated to less than 100 dB above 35 kHz. Design
the filter by calling DesignFIRlo with the appropriate parameters, then filter
your signal using ConvolveWave:

global theWave,FIRCoeffs,w0
put 0 into resultType -- return same type of wave
-- filter the wave, and return result in same global
put 12000 into fpass -- in Hz
put 35000 into fstop
put 100 into dB
put 10 into sampleInterval -- 100kHz is 10µs sample interval
-- design filter coeffs
put DesignFIRlo(fpass,fstop,dB,sampleInterval) into FIRCoeffs
-- filter it, result into global w0
put ConvolveWave ("theWave", "FIRCoeffs", resultType) into w0

For lo-pass filtering, DesignFIRlo and ConvolveWave are the most convenient and efficient (in
terms of computation speed) way to filter signal in WaveTrak.

69

XCMDs and XFCNs

DifferentiateWave

Type: XFCN

Syntax:
DifferentiateWave ("theWave",resultType)

Description:
Differentiates the wave in global variable theWave (double quotes are included to
remind you to pass the name of the global). The derivative is computed by taking
the difference between successive points:

y0=y1-y0
.
.
yn=yn+1-yn
.
.
ynpoints-2=ynpoints-1-ynpoints-2
ynpoints-1=ynpoints-1-ynpoints-2

Notice that the last two points in the derivative are always equal; the one extra point is used to pad the result so that
it has the same number of points as the original wave. resultType selects the data type of the derivative (e.g. -12
for a signed 12-bit integer wave, "F" for a single-precision floating point wave). Passing resultType = 0 will
return the same type as theWave. If an integer wave is requested by resultType and some elements are out of

range, a silent overflow error (XCMDErr = 42) is returned and the out-of-range elements are clipped to the
maximum or minimum allowable value.

Result:
Returns compressed wave as value of XFCN.

Example:
global theWave
put "F" into resultType
-- differentiate, making result a floating point type
put DifferentiateWave ("theWave",resultType) into w0

70

XCMDs and XFCNs

DivideWaves

Type: XFCN

Syntax:
DivideWaves ("wave1","wave2",resultType)

Description:
Divides each point of wave1 by the corresponding point in wave2:

yn = yn,wave1 ÷ yn,wave2

If the number of points in both waves is different, stops dividing when reaches the end of shorter wave. Double
quotes are included to remind you to pass the names of the globals containing the waves. resultType selects the

data type of the result (e.g. -12 for a signed 12-bit integer wave, "F" for a single-precision floating point wave).
Passing resultType = 0 will return same type as wave1. If an integer wave is requested by resultType and

some elements are out of range, a silent overflow error (XCMDErr = 42) is returned and the out-of-range elements
are clipped to the maximum or minimum allowable value. If any element in wave2 is zero, a divide-by-zero error

(XCMDErr = 44) is returned and the function result is undefined.

Result:
Returns compressed wave as value of XFCN.

Example:
global wave1,wave2
put 0 into resultType -- return same type as wave1
-- divide wave1 by wave2, result goes in wave1
put DivideWaves ("wave1","wave2",resultType) into wave1

71

XCMDs and XFCNs

DrawWave

Type: XCMD

Syntax:
DrawWave gList,dispRect,topY,bottomY,baseline

Description:
DrawWave is similar to DrawWaveCoords (see below), but does not support
any cursor readout. Use this XCMD if you only want to draw several waves and
not trap execution if the cursor is within dispRect (the display window or
rectangle). The names of globals where waves are stored are passed as a comma-
delimited list in gList. Up to 16 waves can be overlaid simultaneously; the wave
type and the number of points in all waves must be identical or an error will result.

The screen area enclosed by dispRect is erased first, and the plot will be scaled
to precisely fit the rectangle. For integer waves, topY and bottomY are only
used to position the baseline. The wave plot is scaled so that the maximum value
for that type (e.g. +2047 for a signed 12-bit wave) appears at the top of
dispRect, and the minimum value (e.g. -2048) at the bottom of the rectangle. If
topY=bottomY=0, the range defaults to the maximum integer range, and these
limits do not then need to be passed explicitly; the baseline or zero level will be
positioned mid-way. Float waves, however, are scaled such that values equal to
topY and bottomY will be positioned at the top and bottom of dispRect,
respectively. Values beyond this range are clipped to the region enclosed by
dispRect.

When the dotFlag global is TRUE, the wave is drawn with dots only, otherwise
lines connect the dots if dotFlag is FALSE. If bottomY ≤ baseline ≤ topY, a
horizontal baseline is drawn for reference. The maxPlotPoints global determines
how many points are drawn for each view.

Result:
None.

72

XCMDs and XFCNs

Example:
global w0,w1
-- std WaveTrak dispRect (left,top,right,bottom)
put "12,47,375,289" into dispRect
-- -10 to +10 V vertical range, used only to position
baseline
put 10 into topY
put -10 into bottomY
put "w0,w1" into gList -- plot w0 & w1 together
put 0 into baseline -- baseline @ 0 volts
DrawWave gList,dispRect,topY,bottomY,baseline

73

XCMDs and XFCNs

DrawWaveCoords

Type: XCMD

Syntax:
DrawWaveCoords
gList,dispRect,leftX,rightX,topY,bottomY,baseline,
Xunit,Yunit

Description:
DrawWaveCoords is a very powerful display function and is the main routine
used by WaveTrak to draw your traces on the screen in real time as you navigate
around the stack. The names of globals where waves are stored are passed as a
comma-delimited list in gList. Up to 16 waves can be overlaid simultaneously;
the wave type and the number of points in all waves must be identical or an error
will result. The screen area enclosed by dispRect is erased first, and the plot
will be scaled to precisely fit the rectangle. If the cursor is within dispRect
when this XCMD is called, a crosshair will display the current position of the
cursor in real units defined by the wave descriptors leftX, rightX, topY,
bottomY, Xunit, Yunit (see the discussion on wave descriptors in the
Scripting chapter). Thus, when the cursor is at the extreme top left corner of
dispRect, the crosshair will display the values of leftX and topY as the X-Y
readout. Conversely, when the cursor is at the extreme bottom right corner of
dispRect, the readout will display the values of rightX and bottomY.

For integer waves, topY and bottomY are only used to position the baseline and
calculate the correct cursor readout. The wave plot is scaled so that the maximum
value for that type (e.g. +2047 for a signed 12-bit wave) appears at the top of
dispRect, and the minimum value (e.g. -2048) at the bottom of the rectangle. If
topY=bottomY=0, the range defaults to the maximum integer range, and these
limits do not then need to be passed explicitly; the baseline or zero level will be
positioned mid-way. Float waves, however, are scaled such that values equal to
topY and bottomY will be positioned at the top and bottom of dispRect,
respectively. Values beyond this range are clipped to the region enclosed by
dispRect.

Pressing the option key will change the cursor into an 'expand cursor' and clicking
the mouse over a segment of your wave will magnify that segment and place it at

74

XCMDs and XFCNs

the center of dispRect. You can zoom in repeatedly up to a factor of 256.
Pressing the shift and option keys together and clicking the mouse will shrink the
display. Double clicking the mouse will return you to

75

XCMDs and XFCNs

the home view from any magnification. The magnification in the X and Y
directions is controlled by the globals xMag and yMag, respectively. When the
dotFlag global is TRUE, the wave is drawn with dots only, otherwise lines connect
the dots if dotFlag is FALSE. If bottomY ≤ baseline ≤ topY, a horizontal
baseline is drawn for reference. The maxPlotPoints global determines how many
points are drawn for each view.

The discussion under Trace Cards in the WaveTrak Cards chapter related to
examining and zooming waves applies here since all standard WaveTrak display
functions use DrawWaveCoords. Also, examining the existing scripts in the
WaveTrak master stack will teach you more about how to use this XCMD most
effectively.

Result:
None.

Example:
global w0,w1
-- std WaveTrak dispRect (left,top,right,bottom)
put "12,47,375,289" into dispRect
-- 0 to 1000 µs horizontal range
put 0 into leftX
put 1000 into rightX
put "µs" into Xunit
-- -10 to +10 V vertical range
put 10 into topY
put -10 into bottomY
put "V" into Yunit
put "w0,w1" into gList -- plot w0 & w1 together
put -5 into baseline -- baseline @ -5 volts
DrawWaveCoords
gList,dispRect,leftX,rightX,topY,bottomY,baseline,¬
Xunit,Yunit

76

XCMDs and XFCNs

FilterWaveFFThiLin

Type: XFCN

Syntax:
FilterWaveFFThiLin
("theWave",sampleInterval,fLo,fHi,resultType)

Description:
Digitally high-pass filters the wave in the global theWave (double quotes are
included to remind you to pass the name of the global). The number of points in
wave must be an integral power of 2 (e.g. 512, 1024, 2048) because the FFT is
used to implement the filter. The original sampling interval (in µs) is passed in
sampleInterval. The roll-off is linear and the two knees are passed in fLo
and fHi (both in Hz) as shown in Fig. 11-8:

f (Hz)
0

1

fLo

fHi

Fig. 11-8: Transfer function of digital filter implemented by FilterWaveFFThiLin.

fLo must be less than fHi. resultType selects the data type of the result (e.g. -12 for a signed 12-bit integer
wave, "F" for a single-precision floating point wave). Passing resultType = 0 will return same type as
theWave. If an integer wave is requested by resultType and some elements are out of range, a silent overflow

error (XCMDErr = 42) is returned and the out-of-range elements are clipped to the maximum or minimum
allowable value. Unlike log roll-off filters, linear roll-off designs completely eliminate all frequency components
below fLo.

77

XCMDs and XFCNs

Technical note:

The filter is implemented by performing a forward FFT on the wave, linearly attenuating components
between fLo and fHi and setting to zero all components below fLo, as shown in Fig. 11-8, then

returning the wave to the time domain with an inverse FFT.

Result:
Returns compressed wave as value of XFCN.

Example:
global theWave
put 0 into resultType -- return same type of wave
put 10 into sampleInterval -- original sampling interval in µs/point
-- filter parameters in Hz
put 1000 into fLo
put 2000 into fHi
put FilterWaveFFThiLin ("theWave",sampleInterval,fLo,fHi,¬
resultType) into theWave

78

XCMDs and XFCNs

FilterWaveFFThiLog

Type: XFCN

Syntax:
FilterWaveFFThiLog
("theWave",sampleInterval,f3dB,rolloff,resultType)

Description:
Digitally high-pass filters the wave in the global theWave (double quotes are
included to remind you to pass the name of the global). The number of points in
wave must be an integral power of 2 (e.g. 512, 1024, 2048) because the FFT is
used to implement the filter. The original sampling interval (in µs) is passed in
sampleInterval. The roll-off is logarithmic (rolloff, in dB/octave). Roll-
offs are usually passed as positive reals to produce attenuation below the -3 dB
frequency; negative roll-off values are accepted and will result in emphasis of
those frequencies instead. Regardless of the sign of the roll-off parameter, the DC
component is always returned as zero (otherwise it would be infinite with a
negative roll-off value). The -3 dB frequency is passed in f3dB (in Hz, must be >
zero) as shown in Fig. 11-9:

f (Hz)

-3

0

f3dB

rolloff

Fig. 11-9: Transfer function of digital filter implemented by FilterWaveFFThiLog.

resultType selects the data type of the result (e.g. -12 for a signed 12-bit integer wave, "F" for a single-precision
floating point wave). Passing resultType = 0 will return same type as theWave. If an integer wave is
requested by resultType and some elements are out of range, a silent overflow error (XCMDErr = 42) is

returned and the out-of-range elements are clipped to the maximum or minimum allowable value.

79

XCMDs and XFCNs

80

XCMDs and XFCNs

Technical note:

The filter is implemented by performing a forward FFT on the wave, logarithmically attenuating
components below f3dB at a rate of rolloff dB per octave as shown in Fig. 11-9, then returning the

wave to the time domain with an inverse FFT.

Result:
Returns compressed wave as value of XFCN.

Example:
global theWave
put 0 into resultType -- return same type of wave
put 10 into sampleInterval -- original sampling interval in µs/point
put 1000 into f3dB -- 3dB frequency in Hz
put 24 into rolloff -- in dB/octave
put FilterWaveFFThiLog ("theWave",sampleInterval,f3dB,rolloff,¬
resultType) into theWave

81

XCMDs and XFCNs

FilterWaveFFTloLin

Type: XFCN

Syntax:
FilterWaveFFTloLin
("theWave",sampleInterval,fLo,fHi,resultType)

Description:
Digitally low-pass filters the wave in the global theWave (double quotes are
included to remind you to pass the name of the global). The number of points in
wave must be an integral power of 2 (e.g. 512, 1024, 2048) because the FFT is
used to implement the filter. The original sampling interval (in µs) is passed in
sampleInterval. The roll-off is linear and the two knees are passed in fLo
and fHi (both in Hz) as shown in Fig. 11-10:

f (Hz)
0

1
fLo

fHi

Fig. 11-10: transfer function of digital filter implemented by FilterWaveFFTloLin.

fLo must be less than fHi. resultType selects the data type of the result (e.g. -12 for a signed 12-bit integer
wave, "F" for a single-precision floating point wave). Passing resultType = 0 will return same type as
theWave. If an integer wave is requested by resultType and some elements are out of range, a silent overflow

error (XCMDErr = 42) is returned and the out-of-range elements are clipped to the maximum or minimum
allowable value. Unlike log roll-off filters, linear roll-off designs completely eliminate all frequency components
above fHi.

82

XCMDs and XFCNs

Technical note:

The filter is implemented by performing a forward FFT on the wave, linearly attenuating components
between fLo and fHi, and setting to zero all components above fHi, as shown in Fig. 11-10, then

returning the wave to the time domain with an inverse FFT.

Result:
Returns compressed wave as value of XFCN.

Example:
global theWave
put 0 into resultType -- return same type of wave
put 10 into sampleInterval -- original sampling interval in µs/point
-- filter parameters in Hz
put 1000 into fLo
put 2000 into fHi
put FilterWaveFFTloLin ("theWave",sampleInterval,fLo,fHi,¬
resultType) into theWave

83

XCMDs and XFCNs

FilterWaveFFTloLog

Type: XFCN

Syntax:
FilterWaveFFTloLog
("theWave",sampleInterval,f3dB,rolloff,resultType)

Description:
Digitally low-pass filters the wave in the global theWave (double quotes are
included to remind you to pass the name of the global). The number of points in
wave must be an integral power of 2 (e.g. 512, 1024, 2048) because the FFT is
used to implement the filter. The original sampling interval (in µs) is passed in
sampleInterval. The roll-off is logarithmic (rolloff, in dB/octave). Roll-
offs are usually passed as positive reals to produce attenuation above the -3 dB
frequency; negative roll-off values are accepted and will result in emphasis of
those frequencies instead. Emphasis of higher frequencies can be used to sharpen
edges, but tends to result in noisy signals. The -3 dB frequency is passed in f3dB
(in Hz, must be > zero) as shown in Fig. 11-11:

f (Hz)

-3

0 f3dB

rolloff

Fig. 11-11: transfer function of digital filter implemented by FilterWaveFFTloLog.

resultType selects the data type of the result (e.g. -12 for a signed 12-bit integer wave, "F" for a single-precision
floating point wave). Passing resultType = 0 will return same type as theWave. If an integer wave is
requested by resultType and some elements are out of range, a silent overflow error (XCMDErr = 42) is

returned and the out-of-range elements are clipped to the maximum or minimum allowable value.

84

XCMDs and XFCNs

85

XCMDs and XFCNs

Technical note:

The filter is implemented by performing a forward FFT on the wave, logarithmically attenuating
components above f3dB at a rate of rolloff dB per octave as shown in Fig. 11-11, then returning the

wave to the time domain with an inverse FFT.

Result:
Returns compressed wave as value of XFCN.

Example:
global theWave
put 0 into resultType -- return same type of wave
put 10 into sampleInterval -- original sampling interval in µs/point
put 1000 into f3dB -- 3dB frequency in Hz
put 24 into rolloff -- in dB/octave
put FilterWaveFFTloLog ("theWave",sampleInterval,f3dB,rolloff,¬
resultType) into theWave

86

XCMDs and XFCNs

FilterWaveFIR

Type: XFCN

Syntax:
FilterWaveFIR ("theWave","FIRCoeffs",resultType)

Description:
Implements a finite impulse response (non-recursive) digital filter. The wave to be
filtered is passed in global theWave, and the coefficients describing the filter are
passed in global FIRCoeffs (double quotes are included to remind you to pass
the names of the globals). Unlike the FFT-based filters above, the number of
points in the wave need not be an integral power of two. You must design the filter
beforehand using another application such as Igor Filter Design Lab ('IFDL',
WaveMetrics, Lake Oswego, OR), then import the coefficients into WaveTrak by
pasting them into the coefficients field on the Digital Filter Parameters card (see
the chapter on WaveTrak cards for more details). When you paste the coefficients
using the button, the ASCII values are saved in the field, and are also converted
into a WaveTrak wave, of type float, and copied into the global FIRCoeffs.

Technical note:

The conversion is done for speed so that the ASCII table of filter coefficients doesn't have to be
converted to an array of floats each time the filter routine is invoked -- converting compressed WaveTrak
waves is much quicker.

resultType selects the data type of the result (e.g. -12 for a signed 12-bit integer wave, "F" for a single-precision
floating point wave). Passing resultType = 0 will return same type as theWave. If an integer wave is
requested by resultType and some elements are out of range, a silent overflow error (XCMDErr = 42) is

returned and the out-of-range elements are clipped to the maximum or minimum allowable value.

The advantage of using FIR filtering is greater speed than FFT (for a small number of coefficients, e.g. <100), and
the ability to design any number of filter types such as lo-, hi-, band-pass and notch filters. Consult the Igor Filter
Design Lab manual for more details. The disadvantage is that the filter needs to be designed beforehand and cannot
be changed on-the-fly.

87

XCMDs and XFCNs

Result:
Returns filtered, compressed wave as the value of the XFCN. The filtered wave is shifted left by n/2 samples
(where n is the number of filter coefficients) so that the original and filtered waves are in phase (FIR filtering shifts
the output right by n/2 samples). Also, the first and last n/2 points are returned unfiltered, because there are n/2
points missing before the start of the wave, and after the end of the wave, required to compute the output.

Example:
You have a digitized signal sampled at 100 kHz and you want to remove high frequency noise by low-pass filtering
the wave at 10 kHz. You must first design the filter: start IFDL and select "Initialize IFDL Params..." from the
Macro menu. The sampling rate is left at the normalized default of 1 Hz. You decide that a McClellan-Parks-
Rabiner lo-pass filter is required, therefore select "FIR Filter Designs" from the Macro menu and choose MPR Low
Pass. The end of the normalized passband frequency will be 0.1 (10 kHz/100 kHz), with a maximum error of no
more than 0.5 dB, and the stopband begins at 0.2 (20 kHz) with a minimum attenuation of 60 dB. Click 'Continue'
and the filter characteristics are graphically displayed; a filter with 22 coefficients is computed that will satisfy your
requirements. To transfer the filter to WaveTrak you then copy the coefficients from the 'CoefsTable' window and
paste into the Digital Filters card by clicking on the 'Paste Coefs' button. This copies the coefficients into the field
and converts the ASCII values into a WaveTrak wave in the global FIRCoeffs. You can now implement your
new filter using the FilterWaveFIR XFCN:

global theWave,FIRCoeffs
put 0 into resultType -- return same type of wave
-- filter the wave, and return result in same global
get FilterWaveFIR ("theWave","FIRCoeffs",resultType)
put it into theWave

Go to one of the three sample traces in the first root of WaveTrak and press the 'FIR filter' button to see how the existing filter
affects the signal.

88

XCMDs and XFCNs

GetScrap

Type: XFCN

Syntax:
GetScrap()

Description:
Returns the contents of the clipboard. If clipboard does not contain text, an error is
returned (XCMDErr = 2). The clipboard is also called the scrap in Macintosh
parlance, hence the name of this function. Use this XFCN to import text data into
HyperCard variables.

Result:
Returns contents of clipboard as value of XFCN.

Example:
put GetScrap() into x

Note that even though GetScrap has no parameters, the parentheses must be
included.

89

XCMDs and XFCNs

GetWaveStats

Type: XFCN

Syntax:
GetWaveStats ("theWave",elementNum)

Description:
Computes various statistics on the wave stored in global theWave (double quotes
are included to remind you to pass the wave by name, not by value). The result of
the function is returned as a table consisting of 12 lines separated by carriage
returns:

Line 1: number of points in the wave.
Line 2: wave type (e.g. -12: signed 12 bit integer; F: single precision floating

point.
Line 3: raw mean of all points in the wave.
Line 4: raw root-mean-square (RMS) value of all points.
Line 5: standard deviation (= RMS with DC removed) of all points.
Line 6: smallest possible value for this wave type (e.g. -2048 for type = -12, 0 for

type = 16, -3.2E+38 for type = F).
Line 7: largest possible value for this wave type (e.g. 2047 for type = -12, 65535

for type = 16, 3.2E+38 for type = F)
Line 8: minimum actual value (without scaling) in the form: element number (0

to npoints-1), value.
Line 9: maximum actual value (without scaling) in the form: element number (0

to npoints-1), value.
Line 10: range (line 9 - line 8).
Line 11: value of point number elementNum ('NaN' if elementNum parameter

omitted).
Line 12: size of encoded wave in bytes, including terminal null.

The elementNum parameter is optional. If it is omitted, line 11 returns 'NaN' (a
code for 'not a number').

Result:
Returns a table of wave statistics as the value of the XFCN.

90

XCMDs and XFCNs

Example 1:
This is what GetWaveStats will return if you pass it the sine wave in the first
sample trace card:

global theWave
get GetWaveStats ("theWave",100)
put it into theStats

The variable theStats will contain (without comments of course):

2048 the wave has 2048 points.
-12 the wave is a signed 12 bit integer type.
41.4 the mean value.
729.4 the RMS value.
728.3 the standard deviation.
-2048 the minimum legal value for a signed 12 bit integer type.
2047 the maximum legal value for a signed 12 bit integer type.
315,-996 the smallest actual value was -996 at point no. 315.
111,1099 the largest actual value was 1099 at point no. 111.
2095 the range was 2095 (1099-(-996)).
1069 the value of point no. 100 was 1069.
2053 the wave takes up 2053 bytes when compressed and encoded.

The real values (mean, RMS and standard deviation) are converted according to
the XYCoordYformat global. You have to adjust the results in accordance with
the wave's actual full scale range (±10 volts in this example). See the following
example.

91

XCMDs and XFCNs

Example 2:

Given the example above, you want to compute the true time and voltage values
for the maximum point in the wave. From line 9 in theStats, the raw values for
the maximum point are 111,1099. Get the actual time by multiplying the point
number by the sampling interval = 111*25 = 2775 µs (the sampling interval is
stored in line 3 of the 'HParams' field in every trace card). Getting the voltage is
easy if you use the translateToReal handler in the stack script (see the
chapter on WaveTrak handlers for details):

global topY,bottomY -- these globals initialized at
openCard
put line 2 in theStats into theType -- the data type,
-12
get translateToReal (1099,bottomY,topY,theType)

it will now contain the true voltage value of 5369.96337 mV (Yunit tells us that
the original unit was mV). Therefore, the highest point in the wave occurred at
2775 µs and attained a level of 5.369 volts.

92

XCMDs and XFCNs

InitWaveK

Type: XFCN

Syntax:
InitWaveK (npoints,K,resultType)

Description:
Creates a new wave consisting of npoints elements, and initializes each point to
a constant, K. resultType selects the data type of the result (e.g. -12 for a
signed 12-bit integer wave, "F" for a single-precision floating point wave). Passing
resultType = 0 in this context will generate an error. If an integer wave is
requested by resultType and K is out of range, a silent overflow error
(XCMDErr = 42) is returned and the wave is initialized to the maximum or
minimum allowable value. If an integer wave is requested and K is fractional, it is
rounded first.

Result:
Returns compressed wave as value of XFCN.

Example:
put 2048 into npoints
put 100.7 into K
put -12 into resultType
put InitWaveK (npoints,K,resultType) into w0

w0 will be a signed, 12 bit integer wave consisting of 2048 points, all equal to 101.

93

XCMDs and XFCNs

InitWaveNoise

Type: XFCN

Syntax:
InitWaveNoise (npoints,pkAmpl,offset,resultType)

Description:
Creates a new wave consisting of npoints elements, and initializes it to random
white noise. The peak amplitude of the noise is defined by pkAmpl (therefore the
range will be twice pkAmpl), and the mean DC level by offset. resultType
selects the data type of the result (e.g. -12 for a signed 12-bit integer wave, "F" for
a single-precision floating point wave). Passing resultType = 0 in this context
will generate an error. If an integer wave is requested by resultType and some
points are out of range, a silent overflow error (XCMDErr = 42) is returned and
the out-of-range points are set to the maximum or minimum allowable value.

Result:
Returns compressed wave as value of XFCN.

Example:
put 2048 into npoints
put 1000 into pkAmpl
put -1000 into offset
put -12 into resultType
put InitWaveNoise (npoints,pkAmpl,offset,resultType)
into w0

w0 will be a signed, 12 bit integer wave consisting of 2048 points initialized to
random white noise, with values ranging from -2000 to 0.

94

XCMDs and XFCNs

InitWaveSin

Type: XFCN

Syntax:
InitWaveSin
(npoints,cycles,pkAmpl,phase,offset,resultType)

Description:
Creates a new wave consisting of npoints elements, and initializes it to a sine
wave. The peak amplitude of the sine wave is defined by pkAmpl (therefore the
range will be twice pkAmpl), and the mean DC level by offset. cycles
defines the number of cycles in the wave (need not be an integer), and the phase is
defined by phase in degrees. Mathematically:

yn = pkAmpl * sin (f * n + θ) + offset

where:
n ranges from 0 to npoints-1
f = 2π*cycles/npoints
θ = 2π*phase/360 (phase converted to radians)

resultType selects the data type of the result (e.g. -12 for a signed 12-bit
integer wave, "F" for a single-precision floating point wave). Passing
resultType = 0 in this context will generate an error. If an integer wave is
requested by resultType and some points are out of range, a silent overflow
error (XCMDErr = 42) is returned and the out-of-range points are set to the
maximum or minimum allowable value.

Result:
Returns compressed wave as value of XFCN.

95

XCMDs and XFCNs

Example:
Generate 3 cycles of a cosine wave.

put 2048 into npoints
put 3 into cycles
put 1 into pkAmpl
put 90 into phase
put 1 into offset
put "F" into resultType
put InitWaveSin
(npoints,cycles,pkAmpl,phase,offset,resultType)¬
into w0

w0 will be a floating point wave consisting of 2048 points initialized to 3 cycles of
a cosine, with values ranging from 0 to 2. Note that the cycles, phase,
pkAmpl and offset parameters give you great flexibility in creating the type of
trigonometric function you need. Combining this function with other math
functions lets you create virtually any trig function (e.g. use this XFCN to create a
sine and cosine, then use DivideWaves to compute a tan function).

96

XCMDs and XFCNs

IntegrateWave

Type: XFCN

Syntax:
IntegrateWave ("theWave",baseline,normalize,resultType)

Description:
Integrates the wave in global variable theWave (double quotes are included to
remind you to pass the name of the global). The integral is a cumulative sum of all
points. Mathematically:

Σ
i=0

n

w - baselineiy =n

where:
n ranges from 0 to npoints-1
yn are points in the result
wi are points in the theWave

Integration usually produces very large positive or negative values that usually
have to be scaled down before being overlaid or otherwise compared with the
original wave. If you set normalize to TRUE, the result will be normalized so
that the greatest value will be +1 (or the largest negative value will be -1). This
way you will always know the range of the integral and can easily scale it with
MultWaveK; otherwise you would need to perform several extra steps to find out
the minimum and maximum values with GetWaveStats. resultType selects
the data type of the result (e.g. -12 for a signed 12-bit integer wave, "F" for a
single-precision floating point wave). Passing resultType = 0 will return same
type as theWave. If an integer wave is requested by resultType and some
elements are out of range, a silent overflow error (XCMDErr = 42) is returned and
the out-of-range elements are clipped to the maximum or minimum allowable
value. Since normalized waves range only from -1 to +1, they are always returned
as float types.

Result:

97

XCMDs and XFCNs

Returns compressed wave as value of XFCN.

98

XCMDs and XFCNs

Example:
put TRUE into normalize -- normalize integrated
wave to ±1 range
global w0,theWave -- wave copied to theWave
at openCard
global topY,bottomY,baseline -- defined at openCard
-- convert baseline from real units to binary
put -12 into resultType -- wave is a 12 bit signed
integer type
put translateToBinary(baseline,bottomY,topY,resultType)
into binBase

-- integrate
put IntegrateWave
("theWave",binBase,normalize,resultType) into w0

-- now scale integrated wave to roughly match size of
original
put MultWaveK("w0",2000,resultType) into w0 -- return
integer wave

Note that the trace baseline is stored in real units (e.g. mV) in the trace cards and
must be converted to its binary equivalent before integrating, using the
translateToBinary handler in the stack script. Because w0 is a normalized
integral, we can scale it using MultWaveK, knowing that the result will be within
a range of ±2000. MultWaveK will also convert the new scaled result to a 12 bit
integer type so the original and the integral can be overlaid with
DrawWaveCoords. This strategy is used in the 'Integrate' button in the Button
Bank.

99

XCMDs and XFCNs

MeanWave

Type: XFCN

Syntax:
MeanWave ("theWave",sampleInterval,startTime,endTime)

Description:
Computes the raw mean of points between startTime and endTime µs
included, in wave stored in global theWave (double quotes are included to
remind you to pass the name of the global). sampleInterval is the original
sampling interval in µs, startTime and endTime define the segment of the
wave to be averaged. Passing -1 in endTime tells the XFCN to continue to the
last point. For example, pass startTime = 0,endTime = -1 to compute mean
of entire wave, or startTime,endTime = -1 to compute mean from
startTime µs to end of wave. Use for computing baselines from a segment of a
wave, or the overall mean DC level of a signal.

Result:
Returns a real value formatted according to XYCoordYformat global. This is a
raw mean i.e. a sum of integer or floating point values, which must be corrected for
full-scale range, A/D coding, amplifier gain, etc...

100

XCMDs and XFCNs

Example:
Acquire a wave from A/D channel 0 while delivering a 100 µs stimulus pulse from
timer channel 1. You know that the stimulus artifact lasts 500 µs, so you want to
compute the mean value of the response (in real mV) starting at 500 µs to the end,
to avoid the contaminating artifact. The number of points and the sample interval
are defined elsewhere as globals:

global sampleInterval,npoints,FSTable,theWave,ADCbits

put 0 into startMUX -- the A/D channel
put startMUX into endMUX
put 100 into pulseWidth -- width of stimulus pulse
put 0 into preTrig
put 1 into timerChannel

-- stimulate and acquire the signal
get AcqWaveTimer
(sampleInterval,npoints,startMUX,endMUX,¬
timerChannel,preTrig,pulseWidth,"theWave")

-- avoid artifact, compute mean from 500 µs to end
put MeanWave ("theWave",sampleInterval,500,-1) into
theMean

-- translate into mV
put item 1 in line (startMUX+1) in FSTable into
minFullScale
put item 2 in line (startMUX+1) in FSTable into
maxFullScale
get
translateToReal(theMean,minFullScale,maxFullScale,ADCbi
ts)

The raw computed mean in theMean had to be translated from a mean of binary
samples into real mV using the translateToReal handler in the stack script.

101

XCMDs and XFCNs

MultWaveK

Type: XFCN

Syntax:
MultWaveK ("theWave",K,resultType)

Description:
Multiplies every point in global variable theWave (double quotes are included to
remind you to pass the name of the global) by a constant K (need not be an
integer). resultType selects the data type of the result (e.g. -12 for a signed 12-
bit integer wave, "F" for a single-precision floating point wave). Passing
resultType = 0 will return same type as theWave. If an integer wave is
requested by resultType and some elements are out of range, a silent overflow
error (XCMDErr = 42) is returned and the out-of-range elements are clipped to
the maximum or minimum allowable value. Useful for scaling waves for overlays,
or numerically implementing gain or attenuation. Pass -1 in K if you want to invert
a wave. Pass 1/K if you want to divide each point by a constant K.

Result:
Returns compressed wave as value of XFCN.

Example:
global theWave
put 100 into K
put 0 into resultType
-- multiply every point in theWave by 100, return same
data type
put MultWaveK ("theWave",K,resultType) into theWave
-- divide every point in theWave by 50, return float
data type
put 50 into K
put "F" into resultType
put MultWaveK ("theWave",1/K,resultType) into theWave

102

XCMDs and XFCNs

MultWaves

Type: XFCN

Syntax:
MultWaves ("wave1","wave2",resultType)

Description:
Multiplies two waves together, point by point:

yn = yn,wave1 * yn,wave2

If the number of points in both waves is different, stops multiplying when reaches the end of shorter wave. Double
quotes are included to remind you to pass the names of the globals containing the waves. resultType selects the

data type of the result (e.g. -12 for a signed 12-bit integer wave, "F" for a single-precision floating point wave).
Passing resultType = 0 will return same type as wave1. If an integer wave is requested by resultType and

some elements are out of range, a silent overflow error (XCMDErr = 42) is returned and the out-of-range elements
are clipped to the maximum or minimum allowable value. Useful for multiplying a signal by an envelope, as in
amplitude modulation (AM), or for windowing a wave prior to FFT (the Window XFCN implements several

standard window functions).

Result:
Returns compressed wave as value of XFCN.

Example:
global wave1,wave2
put 0 into resultType
-- multiply wave1 by wave2, result goes in wave1
put MultWaves ("wave1","wave2",resultType) into wave1

103

XCMDs and XFCNs

OverlayWave

Type: XCMD

Syntax:
OverlayWave gList,dispRect,topY,bottomY,baseline

Description:
OverlayWave is similar to DrawWave, except that it does not erase what was
already drawn in the dispRect. Call DrawWave for the first set of waves, to
erase the dispRect, then call OverlayWave to overlay additional waves over
those previously drawn. This XCMD is very useful if you want to draw several
waves simultaneously but do not have access to all the data at once. Cursor
readout and zooming is not supported by OverlayWave. The only way to draw
multiple waves and zoom them simultaneously is to pass all of them in a single call
to DrawWaveCoords.
See DrawWave for details about the parameter list.

Result:
None.

Example:
global w0,w1,w2,w3
-- std WaveTrak dispRect (left,top,right,bottom)
put "12,47,375,289" into dispRect
-- -10 to +10 V vertical range, used only to position
baseline
put 10 into topY
put -10 into bottomY
put "w0,w1" into gList -- plot w0 & w1 together
put 0 into baseline -- baseline @ 0 volts
DrawWave gList,dispRect,topY,bottomY,baseline
.
.
put "w2,w3" into gList
-- overlay w2 & w3 without erasing w0 & w1
OverlayWave gList,dispRect,topY,bottomY,baseline

104

XCMDs and XFCNs

PowerSpectrum

Type: XFCN

Syntax:
PowerSpectrum ("theWave",dB,floor)

Description:
Computes frequency (power) spectrum of wave in global theWave (double
quotes are included to remind you to pass the name of the global containing the
wave):

Re Im2 2+ nny =n

where:
yn = nth frequency component
Ren = real part of nth element after FFT
Imn = imaginary part of nth element after FFT

The number of points in theWave must be an integral power of 2 for the FFT. If
db = TRUE, converts spectrum to a log scale and returns elements in dB
normalized to maximum value (= 0 dB). Values < floor will be clipped to
floor; this is to avoid very large negative components with a log scale. If
floor = 0, small values are not clipped and 0 elements in spectrum (which should
be -∞ on a log scale) are returned as -3.403E+38 (the smallest single precision
floating point number, because HyperCard does not recognize the -INF symbol).
dB values are computed as follows:

dB = 10 log
yn

y
max

()
Result:
Returns compressed wave as value of XFCN. Result is always a floating point
wave (type "F").

105

XCMDs and XFCNs

Example:
global w0,theWave
put TRUE into dB -- display on a log scale,
normalized to 0 dB
put -80 into floor -- clip very small components to -80
dB
put PowerSpectrum ("theWave",dB,floor) into w0

106

XCMDs and XFCNs

PutScrap

Type: XCMD

Syntax:
PutScrap x

Description:
Copies contents of variable x (global or local) to the clipboard. Note that double
quotes should not enclose the variable name since it is passed by value, not by
reference. Unlike GetScrap, this is an XCMD so no parentheses should be used.
The clipboard is also called the scrap in Macintosh parlance, hence the name of
this command. Use this XFCN to export text data from WaveTrak.

Result:
None.

Example:
put "1,2,3,4" into x
PutScrap x

The clipboard will contain the string 1,2,3,4.

107

XCMDs and XFCNs

PutToGlobal

Type: XCMD

Syntax:
PutToGlobal value,"destgName"

Description:
Copies contents of variable into global destgName (double quotes are included
to remind you to pass the name of the global). This is a very useful command
whose importance may not be immediately obvious. WaveTrak frequently uses
arrays of waves, which can be passed using the names of the global variables in a
comma-delimited list. The AcqWave commands are a good example. You can
extract each wave by using the built-in HyperCard function the value of
(item n in gList), for example (the Scripting chapter discusses this
technique in more detail). The AcqWave command does the job of filling the
globals with data. But what if you want to create your own array of waves and
have to fill each global with data yourself? This problem comes up in operations
such as the 'Overlay Waves...' menu item under the 'Analysis' menu in trace cards
(see the TrOverlay handler in the trace background script). We have a list of
global names, and we have to iterate and fill each corresponding global variable
with data. In essence, we need a function that does the opposite of the standard
the value of () HyperCard function. The example below illustrates this
point.

Result:
None.

108

XCMDs and XFCNs

Example:
You need to write a script that will generate up to 16 sine waves, place them in
globals, and compile the names of the globals into a gList so that a command
like DrawWaveCoords can draw them together. This would be easy if the
number of sine waves was constant. Instead, the number of waves is determined
by a variable (≤ 16), and you don't know beforehand how many sines you must
generate. You therefore need to do this in a loop:

-- up to 16 globals in wave array to receive sines
global
w0,w1,w2,w3,w4,w5,w6,w7,w8,w9,w10,w11,w12,w13,w14,w15
global gList -- std global containing list of global
names

-- put the global names in a list for easy access
put
"w0,w1,w2,w3,w4,w5,w6,w7,w8,w9,w10,w11,w12,w13,w14,w15"
into¬
gNameList

-- how many sines to generate?
ask "Enter number of sine waves:" with 1
put it into nWaves

-- define the sine wave
put 2048 into npoints
put 2000 into pkAmpl
put 0 into phase
put 0 into offset
put -12 into resultType

put empty into gList -- clear old names
repeat with waveCtr=1 to nWaves
 put waveCtr into cycles -- change number of cycles
for each sine
 -- make a new sine wave
 get
InitWaveSin(npoints,cycles,pkAmpl,phase,offset,resultTy
pe)

109

XCMDs and XFCNs

 -- put NAME of next global from gNameList into local
var gName
 put item waveCtr in gNameList into gName
 -- copy sine wave to next global in list
 PutToGlobal it,gName

110

XCMDs and XFCNs

 -- append next global name for plotting, etc.
 put gName into item waveCtr in gList
end repeat

You define the 16 globals, then put their names into a comma-delimited list
(gNameList). Each iteration of the loop generates a new sine wave, and
PutToGlobal is used to copy the new wave to the next global, determined by
the names in gNameList. gList is the standard global containing a list of
global names containing valid data in a trace card (see the Scripting chapter). This
ensures that your sine waves will work as expected in every trace card (if you put
the example script into a button on a trace card and execute it, your sine waves will
be drawn and zoomed normally).

PutToGlobal is useful when you only have access to the name of a global, and the
names change as in successive iterations of a loop, as shown in the example. Passing a
global name as a constant in a quoted string (e.g. PutToGlobal it,"w0") makes little
sense because put it into w0 would do just as well.

111

XCMDs and XFCNs

ReadTTLbit

Type: XFCN

Syntax:
ReadTTLbit (bitNumber)

Description:
Reads the current value of bit bitNumber (0 to 7) of the TTL input port.

Technical note:

Keep in mind that HyperTalk scripts execute relatively slowly compared to externals written in C or
assembly. Therefore you shouldn't use this XFCN for polling the TTL port to trigger some action like an
acquisition when the bit changes state. Use AcqWaveOnTTL instead.

Result:
Returns 0 if bit is TTL low, or 1 if bit is TTL high.

Example:
ask "Which bit number do you want to read (0-7)?" with 0
put it into bitNumber
-- read the bit
get ReadTTLbit (bitNumber)
put "State of TTL input bit " & bitNumber &" = " & it

112

XCMDs and XFCNs

ReadTTLbyte

Type: XFCN

Syntax:
ReadTTLbyte (inOut)

Description:
Reads the current byte (8 bits) at either the TTL input port (inOut = 0) or the TTL
output port read back register (inOut = 1). The latter is useful for monitoring the
current output at the digital output port.

Technical note:

Keep in mind that HyperTalk scripts execute relatively slowly compared to externals written in C or
assembly. Therefore you shouldn't use this XFCN for polling the TTL port to trigger some action like an
acquisition when the bits change state. Use AcqWaveOnTTL instead.

Result:
Returns unsigned byte value of input or output port (0 to 255).

Example:
-- 0=read input port, 1=read contents of output port
get ReadTTLbyte (0) -- read the input port
put "TTL input port value: " & it

113

XCMDs and XFCNs

ScrapToComma

Type: XFCN

Syntax:
ScrapToComma()

Description:
This XFCN converts the contents of the clipboard from tab-delimited to comma-
delimited format. Also converts commas to slashes ('/') to avoid extra unwanted
columns when HyperCard attempts to interpret the table. A terminal null (ASCII
zero) is appended if none exists, for HyperCard string compatibility. The clipboard
is also called the scrap in Macintosh parlance, hence the name of this function.

Use this XFCN to convert standard lists and tables, which are tab-delimited, to
HyperCard format (comma-delimited) for importing from spreadsheets, etc.

Result:
The contents of the clipboard are converted in place. Returns as the value of the
function the number of tabs converted to commas.

114

XCMDs and XFCNs

Example:
The clipboard contains the following tab-delimited table (3 columns, 2 rows).
Commas do not separate columns here:

1 2 3,last item
4,5,6 5 6

-- convert
put ScrapToComma()

The contents of the clipboard will now be:

1,2,3/last item
4/5/6,5,6

Each tab character (which separated columns) has been replaced by a comma. The
message box reads 4 indicating that 4 tabs were converted to commas. HyperCard
can now separate each of the three items separated by commas (e.g. '3/last
item' is one item as far as HyperCard is concerned); the original commas were
converted to slashes to retain the original number of columns.

115

XCMDs and XFCNs

ScrapToTab

Type: XFCN

Syntax:
ScrapToTab()

Description:
This XFCN converts the contents of the clipboard from comma-delimited to tab-
delimited format. Also adds a terminal null (ASCII zero) if none exists, for
HyperCard string compatibility. Existing tabs are unchanged. The clipboard is
also called the scrap in Macintosh parlance, hence the name of this function.
Use this XFCN to convert HyperCard lists and tables, which are comma-delimited,
to standard Mac export format (tab-delimited) for exporting to spreadsheets, etc.

Result:
The contents of the clipboard are converted in place. Returns as the value of the
function the number of commas converted to tabs.

Example:
The clipboard contains the following (3 HyperCard items per line):

1,2,3/last item
4,5,6

-- convert
put ScrapToTab()

The contents of the clipboard will now be:

1 2 3/last item
4 5 6

The message box reads 4 indicating that 4 commas were converted to tabs.

116

XCMDs and XFCNs

SetADGain

Type: XCMD

Syntax:
SetADGain theGain

Description:
This XCMD sets the gain of the on-board programmable gain amplifier on the
MacADIOS II card. theGain must be 1, 10 or 100.

Technical note:

The appropriate bit pattern is written to bits 0 and 1 of the MacADIOS II Mode register; bits 2-7 are
unconditionally set to 0.

Result:
None.

Example:

SetADGain 10

The gain of the programmable gain amplifier is set to 10.

117

XCMDs and XFCNs

StartPulseTrain

Type: XFCN

Syntax:
StartPulseTrain (timerChannel,pulseWidth,period)

Description:
Generates a continuous train of TTL pulses at the AM9513 timer output
timerChannel (1 to 5). The pulse train will continue after the function returns,
until StopPulseTrain is called, or until another function uses that channel for
another operation. The pulse train will consist of a TTL high lasting
pulseWidth µs, with a repetition rate of period µs (Fig. 11-12). The
maximum pulseWidth and/or period = 131000000 (= 131 seconds).
pulseWidth must be less than period, and both must be positive integers.

Counters timerChannel and timerChannel-1 are used (if timerChannel
= 1, counter 5 is used [Important note: counter 5 is used by all acquisition
functions, therefore a pulse train at counter 1 will be aborted by any subsequent
analog acquisition such as AcqWave or AcqWaveDAC for example]). The output
of counter timerChannel-1 will be TTL low for the duration of the train. Make
sure that other operations are not in progress on the timer channels affected by this
function. Because the AM9513 has 16 bit counters, the resolution of short pulses
at long repetition rates may be limited (see example). If the true pulse width would
have differed by more than 30% from what was requested in the parameter list,
StartPulseTrain returns with an XCMDErr = 76 and does not generate the
pulse train. If the true pulse width differed by less than 30%, the train is generated
and a silent error 60 is returned in XCMDErr.

Timer
output

pulseWidth

period

Fig. 11-12: Pulse train generated by StartPulseTrain XFCN.

Result:
The value of the XFCN returns a comma-delimited list containing the actual width of the pulse (which may differ

118

XCMDs and XFCNs

from pulseWidth due to the limited resolution of the AM9513's 16 bit counters), the actual period, and the

possible resolution of the pulse width given the current parameters.

119

XCMDs and XFCNs

Example 1:
Generate 100 µs pulses at 50 Hz from timer output 1:

put 1 into timerChannel -- the timer channel
put 100 into pulseWidth -- pulse width in µs
put (1/50)*1000000 into period -- period in µs
-- start the pulse train
get StartPulseTrain (timerChannel,pulseWidth,period)
put it

The signal at the output of timer 1 would be as shown:

Timer 1
output

100 µs

20 ms

The message box will read '100,20000,1' indicating that the actual pulse width and period were exactly as requested
(XCMDErr = 0), and the resolution of these parameters is 1 µs. The output of timer 5 will be TTL low, even
though timer 5 is used internally to clock timer 1. Remember that timer 5 is used by the MacADIOS II card to clock
the A/D converter, so if you subsequently call any of the AcqWave commands, the pulse train will be aborted. It is

therefore a good idea to only use timers 2 to 4 for continuous pulse train generation.

120

XCMDs and XFCNs

Example 2:
Generate 47 µs pulses at 1 second intervals from timer output 1:

put 1 into timerChannel -- the timer channel
put 47 into pulseWidth -- pulse width in µs
put 1000000 into period -- period in µs
-- start the pulse train
get StartPulseTrain (timerChannel,pulseWidth,period)
put it

The signal at the output of timer 1 would be as shown:

Timer 1
output

46.2 µs

999999 µs

The message box will read '46,999999,15'. Note that the true pulse width is 46.2 µs, but the reported value is
rounded to the nearest microsecond. XCMDErr is set to 60 to indicate that the actual and requested widths are
different. The true period is close at 999999 µs. The possible resolution of these parameters is reported as 15 µs, but
neither 46 nor 999999 are multiples of 15. The resolution was actually 15.4 µs but it too was rounded, so that the
true pulse width was generated more accurately than what would have been possible with a resolution of 15 µs (i.e.
45 µs pulse width).

121

XCMDs and XFCNs

Example 3:
Similar to example 2, generate 47 µs pulses at 2 second intervals from timer output 1:

put 1 into timerChannel -- the timer channel
put 47 into pulseWidth -- pulse width in µs
put 2000000 into period -- period in µs
-- start the pulse train
get StartPulseTrain (timerChannel,pulseWidth,period)
put it

This time, no pulse train is generated, and an XCMDErr = 76 is returned instead. The message box will read
'61,2000016,31' indicating that the best you can do is a pulse 61 µs wide. This differed by more than 30% from the
47 µs you requested, so the signal was not generated. You have to adjust the pulse width and/or period. The
possible resolution with such a long period is now 31 µs. In general, the greater the difference between
pulseWidth and period, the greater the chance that StartPulseTrain will not be able to generate a pulse

with the precision requested.

Technical note:

Due to the design of the AM9513 chip, it is not possible to concatenate two counters internally so that
one edge-triggers another. External connections between the output of one channel and the gate of
another channel are required.

122

XCMDs and XFCNs

StopPulseTrain

Type: XCMD

Syntax:
StopPulseTrain timerChannel

Description:
Stops the pulse train being generated at the AM9513 timer output
timerChannel (1 to 5). Use this XCMD to stop the pulse train generated by
StartPulseTrain. Counters timerChannel and timerChannel-1 are
disarmed (see StartPulseTrain). Make sure that other operations are not in
progress on the timer channels affected by this command.

Result:
None.

Example 1:
Generate 100 µs pulses at 1 ms intervals from timer output 1:

put 1 into timerChannel -- the timer channel
-- start the pulse train
get StartPulseTrain (timerChannel,100,1000)
-- stop pulse train
StopPulseTrain timerChannel -- timer 5 is also
disarmed

123

XCMDs and XFCNs

SubtractWaves

Type: XFCN

Syntax:
SubtractWaves ("wave1","wave2",resultType)

Description:
Subtract wave2 from wave1, point by point:

yn = yn,wave1 - yn,wave2

If the number of points in both waves is different, stops subtracting when reaches the end of the shorter wave.
Double quotes are included to remind you to pass the names of the globals containing the waves. resultType

selects the data type of the result (e.g. -12 for a signed 12-bit integer wave, "F" for a single-precision floating point
wave). Passing resultType = 0 will return same type as wave1. If an integer wave is requested by
resultType and some elements are out of range, a silent overflow error (XCMDErr = 42) is returned and the

out-of-range elements are clipped to the maximum or minimum allowable value. Useful for subtracting some
underlying contaminating signal (such as a stimulus artifact).

Result:
Returns compressed wave as value of XFCN.

Example:
global wave1,wave2
put 0 into resultType -- same type as wave1
-- subtract wave2 from wave1, result goes in wave1
put SubtractWaves ("wave1","wave2",resultType) into wave1

124

XCMDs and XFCNs

TabToComma

Type: XFCN

Syntax:
TabToComma (theData)

Description:
This XFCN converts a variable (theData) from tab-delimited to comma-
delimited format. Use this XFCN to convert tab-delimited tables to HyperCard
format (comma-delimited). Note that the variable theData is passed by value
(no quotes), and not by name. You will commonly call GetScrap before
TabToComma to get the contents of the clipboard.

Result:
Returns as the value of the function, the data with all tab characters changed to
commas. Existing commas are left unchanged.

Example:
-- make a tab-delimited table
put "1" & tab & "2" & tab & "3" & return into x
put "4" & tab & "5" & tab & "6" & return after x
put TabToComma(x) into x -- convert to comma-delimited
format

x is passed to TabToComma by value, therefore it is not enclosed in double
quotes. The contents of x will be:

1,2,3
4,5,6

where each item in a row is separated by a comma.

125

XCMDs and XFCNs

ThresholdWave

Type: XFCN

Syntax:
ThresholdWave
("theWave",threshold,hysteresis,resultType)

Description:
Threshold detects the wave in global variable theWave (double quotes are
included to remind you to pass the name of the global):

1, if w ≥ threshold n

y =n
0, if w < threshold n

where:
n ranges from 0 to npoints-1
wn are points in the theWave
yn are points in the result

In practice, noisy waves could cause several apparent threshold crossings where
only one is desired. The actual threshold is adjusted by ±hysteresis/2 with
each crossing. This is a very useful function, especially when combined with other
operations. For example, differentiating and thresholding a wave at the zero level
will detect the peaks and troughs.

Result:
Returns compressed wave (containing only zeroes and ones) as the value of the
XFCN.

126

XCMDs and XFCNs

Example:
Create a noisy sine wave and threshold detect without hysteresis. The result is
scaled up and offset so it can be compared with the original sine wave:

global w0,w1

put 2048 into npoints
put 1500 into pkAmpl
put 2 into cycles
put 0 into phase
put 0 into offset
put -12 into resultType

put 0 into hysteresis
put 0 into threshold
-- make a sine wave
put
InitWaveSin(npoints,cycles,pkAmpl,phase,offset,resultTy
pe)¬
into w0
-- add some noise
put InitWaveNoise (npoints,pkAmpl/10,offset,resultType)
into w1
put AddWaves ("w0","w1",0) into w0
-- threshold detect, result into w1
put ThresholdWave
("w0",threshold,hysteresis,resultType) into w1
-- scale and offset result
put MultWaveK("w1",2000,0) into w1
put AddWaveK("w1",-1000,0) into w1

The result from this example is shown in Fig 11-13a. Note how noisy the
threshold crossings are due to the added white noise.

127

XCMDs and XFCNs

w0 w1

Fig.11-13a: Threshold detection of noisy sine wave with hysteresis = 0. The detection was noisy with several
apparent crossings reported with each swing of the sine wave.

The same threshold detection with hysteresis = 300 (300/1500 = 20 % of peak amplitude) is shown below:

w0 w1

Fig.11-13b: Threshold detection of same noisy wave with hysteresis = 20 % of peak amplitude of sine wave. Here
the crossings are clean and the detector is immune to the noise on the sine wave.

The crossings are now clean, but the exact point in time is less certain. You will have to adjust the hysteresis to best
suit your signal.

128

XCMDs and XFCNs

Trim

Type: XFCN

Syntax:
Trim ("theWave",sampleInterval,segment)

Description:
Deletes a number of points from the wave in global variable theWave (double
quotes are included to remind you to pass the name of the global), corresponding to
a segment segment µs long. If segment is negative, deletes points from
beginning of wave, otherwise deletes from end of wave. The result is placed back
into theWave.

This function is useful if you acquire a wave that is longer than you need. For
example, you might need to generate a long conditioning pre-pulse with
AcqWaveDAC, but are only interested in the signal evoked by the shorter pulse.
Use Trim to remove the segment of wave corresponding to the pre-pulse time.

Result:
Returns trimmed wave in same global as original. The value of the XFCN equals
the number of points remaining in the trimmed wave.

129

XCMDs and XFCNs

Example:
global theWave

put 25 into sampleInterval
put 8192 into npoints

put 0 into DACchannel -- the D/A channel, 0 or 1
put -5000 into DACpre -- analog level of pre-pulse
(in mV)
put 50000 into prePulse -- long pre-pulse (in µs)
put 7000 into DACpulse -- analog level during pulse
(in mV)
put 1000 into pulseWidth -- short pulseWidth (in µs)
put 0 into DACpost -- final analog level after
pulse (in mV)

put 0 into startMUX -- the A/D channel
put startMUX into endMUX

-- adjust pulseWidth and prePulse to multiples of
sampleInterval
put round(pulseWidth/sampleInterval)*sampleInterval
into pulseWidth
put round(prePulse/sampleInterval)*sampleInterval into
prePulse

-- acquire the wave and generate analog pulse
AcqWaveDAC sampleInterval,npoints,startMUX,endMUX,¬
DACchannel,DACpre,DACpulse,DACpost,prePulse,pulseWidth,
"theWave"

-- delete the segment acquired during the pre-pulse
put Trim("theWave",sampleInterval,-prePulse)

The message box reads '6192', the number of points in the trimmed wave. This
means that 2000 points were deleted from the beginning of the wave
corresponding to 2000 * 25 (sampleInterval) = 50000 µs, the length of the
pre-pulse.

130

XCMDs and XFCNs

131

XCMDs and XFCNs

WaveToEventList

Type: XFCN

Syntax:
WaveToEventList ("theWave",sampleInterval)

Description:
Returns a list of events from the wave in global variable theWave (double quotes
are included to remind you to pass the name of the global). sampleInterval is
the sampling interval of the original wave in µs per point.

There are two types of events: a positive zero-crossing (when the signal crosses
from ≤ 0 to > 0) is a 1 event. A negative zero-crossing (when the signal crosses
from > 0 to ≤ 0) is a 0 event. Events are reported as 2 comma-delimited items on
each line of a list. The first item is the type of event (0 or 1) and the second is the
time the event occurred (= point number * sampleInterval). If you want just
the point numbers when an event occurred, rather that the time, pass
sampleInterval = 1.

This function is very useful for extracting the times when certain events occurred.
You can use this XFCN with other operations such as filters, differentiators and
threshold detectors to build very powerful signal analysis functions. The 'Peak
Detector' button is an excellent example of how to build sophisticated commands.

Result:
Returns a table of events (0 or 1) and the time the event occurred, separated by a
comma. The number of lines in the list equals the number of events detected. A
maximum of 400 events can be reported.

132

XCMDs and XFCNs

Example:
Generate a cosine wave and pass it to WaveToEventList:

global theWave

put 25 into sampleInterval -- assume
put 2048 into npoints
put 1500 into pkAmpl
put 1 into cycles
put 90 into phase -- make a cosine
put 0 into offset
put "F" into resultType -- float type

put InitWaveSin
(npoints,cycles,pkAmpl,phase,offset,resultType)¬
into theWave
-- get the event list
get WaveToEventList ("theWave",sampleInterval)

1st event always at time=0

a '0' event at
time=12825 µs

a '1' event at
time=38425 µs

Fig. 11-14: One cycle of a cosine has three events.

Fig.11-14 shows the wave generated by this script. Every wave always has one event at time 0 (1 if first point > 0,
or 0 if first point ≤ 0). The cosine example has two additional events at the times shown. The variable it will

contain the following table:

133

XCMDs and XFCNs

134

XCMDs and XFCNs

1,0
0,12825
1,38425

representing the type of event and the time it occurred.

135

XCMDs and XFCNs

WaveToXYTable

Type: XFCN

Syntax:
WaveToXYTable ("theWave",leftX,rightX,topY,bottomY)

Description:
This XFCN is similar to CopyXYTable, except that the result is returned as the
value of the function rather than being copied to the clipboard. WaveToXYTable
converts the wave stored in global theWave (double quotes are included to
remind you to pass the name of the global) into a comma-delimited ASCII table.
Both X and Y values are converted and copied. The X values are linearly mapped
from their point numbers such that the first X value will be leftX and the last
will be rightX. The XYCoordXformat global determines the format of the real
X values. If you pass zero for both leftX and rightX, X values will simply be
point numbers (i.e. 0, 1, 2 . . npoints-1). The conversion format will default to
"%.0f" (see the chapter on WaveTrak globals for an explanation of conversion
formats specified by XYCoordXformat and XYCoordYformat globals).

Y values of integer waves are linearly mapped such that the maximum value (e.g.
2047 for a signed 12 bit wave) will be topY and minimum value (e.g. -2048) will
be bottomY. If you pass zero for both topY and bottomY, integer Y values are
converted without scaling with a conversion format of "%.0f" (i.e. you will get
integer values ranging from -2048 to 2047 for a signed 12 bit wave). Because
there are no full scale limits for float waves, Y values are always converted without
translation. The XYCoordYformat global determines the format of the real Y
values.

Use this XFCN to convert waves to numerical tables if you need to accurately
determine the values of individual point numbers. Remember that point n in
theWave will be in line n+1 in the table returned by this function.

Result:
Translates the wave into a comma-delimited table of X-Y data pairs and returns the
table as the result of the function.

136

XCMDs and XFCNs

Example:
This is an example of what you would get if you converted the sample sine wave
in the first trace card. The code fragment assumes that all wave descriptors have
been initialized when you opened the trace card:

global theWave,leftX, rightX, topY, bottomY
global XYCoordXformat,XYCoordYformat
-- save globals
put XYCoordXformat into tempX
put XYCoordYformat into tempY
-- 3 digits after the decimal point
put "%.3f" into XYCoordXformat
put "%.3f" into XYCoordYformat
get WaveToXYtable
("theWave",leftX/1000,rightX/1000,topY/1000,¬
bottomY/1000)
-- restore globals
put tempX into XYCoordXformat
put tempY into XYCoordYformat

Note that we elected to convert the X-Y values in ms and volts, rather than µs and
mV, by passing leftX/1000, rightX/1000, topY/1000, bottomY/1000
instead of leftX, rightX, topY, bottomY. To make sure that we get enough
precision, the conversion formats were reset to 3 digits after the decimal point
("%.3f"). Note that we saved, then restored the values of XYCoordXformat
and XYCoordYformat globals to avoid interfering with other WaveTrak
functions. The variable it will contain the following table consisting of 2048
lines (= npoints):

0.000,-0.364
0.025,-0.291
0.050,-0.208

.

.

.
51.150,-0.696
51.175,-0.603

137

XCMDs and XFCNs

WaveToYTable

Type: XFCN

Syntax:
WaveToYTable ("theWave",topY,bottomY)

Description:
This XFCN is similar to CopyYTable, except that the result is returned as the
value of the function rather than being copied to the clipboard. WaveToYTable
converts the wave stored in global theWave (double quotes are included to
remind you to pass the name of the global) into an ASCII table. Only Y values are
converted. Y values of integer waves are linearly mapped such that the maximum
value (e.g. 2047 for a signed 12 bit wave) will be topY and minimum value (e.g. -
2048) will be bottomY. If you pass zero for both topY and bottomY, integer Y
values are converted without scaling with a conversion format of "%.0f" (i.e. you
will get integer values ranging from -2048 to 2047 for a signed 12 bit wave).
Because there are no full scale limits for float waves, Y values are always
converted without translation. The XYCoordYformat global determines the
format of the real Y values.

Use this XFCN to convert waves to numerical Y values if you need to accurately
determine the values of individual point numbers. Remember that point n in
theWave will be in line n+1 in the table returned by this function.

Result:
Translates the wave into a column of Y data and returns the table as the result of
the function.

138

XCMDs and XFCNs

Example:
This is an example of what you would get if you translated the sample sine wave in
the first trace card. The code fragment assumes that all wave descriptors have
been initialized when you opened the trace card:

global theWave
get WaveToYtable ("theWave",0,0)

Here we elected to convert the Y values as raw integers without scaling, by passing
zero for both topY and bottomY. Any conversion format in the
XYCoordYformat global was ignored and defaulted to "%.0f". The variable it
will contain the following column of data, consisting of 2048 lines (= npoints):

-75
-60
-43
.
.
.

-143
-124

139

XCMDs and XFCNs

Window

Type: XFCN

Syntax:
Window
("theWave",windowType,offset,direction,resultType)

Description:
Multiplies (direction = 1) or divides (direction = -1) the wave in global
variable theWave (double quotes are included to remind you to pass the name of
the global) by a window function. The window function is selected by
windowType:

1: Hanning
2: Parzen (triangular)
3: Welch

offset is first subtracted from the wave before windowing, then added back.
Fig.11-15 illustrates how the offset parameter is useful. If a sine wave is floating
on a DC level and a window is applied, the result shown in a) is obtained, which is
not what we want. Instead, if the DC level is temporarily removed while the sine
wave is windowed, we get the desired result. resultType selects the data type
of the result (e.g. -12 for a signed 12-bit integer wave, "F" for a single-precision
floating point wave). Passing resultType = 0 will return same type as
theWave. If an integer wave is requested by resultType and some elements
are out of range, a silent overflow error (XCMDErr = 42) is returned and the out-
of-range elements are clipped to the maximum or minimum allowable value.

Window functions are useful for tapering a wave at either end to avoid 'spectral
leakage' during FFT computations. The direction parameter allows you to 'de-
window' a wave; this is useful if you want to filter a wave with the FFT while
applying a window. Remove the window by calling Window a second time with
direction = -1. Floating point round-off errors usually produce spurious
transients at the extremes of de-windowed signals. Experiment with various
parameters to get the best results (see the 'Lo/Hi-pass + window' buttons for
scripting examples of how windows can be used in digital filtering).

140

XCMDs and XFCNs

Result:
Returns compressed wave as value of XFCN.

141

XCMDs and XFCNs

Example:
global theWave

put 2048 into npoints
put 500 into pkAmpl
put 20 into cycles
put 0 into phase
put 1000 into offset -- sine wave floats on a DC
level
put -12 into resultType

put InitWaveSin
(npoints,cycles,pkAmpl,phase,offset,resultType)¬
into theWave

put 1 into windowType -- Hanning window
put 0 into offset -- window without offset
compensation
-- (or put 1000 into offset for result in (c), below)
put 1 into direction
put Window
("theWave",windowType,offset,direction,resultType)¬
into theWave

a)

142

XCMDs and XFCNs

143

XCMDs and XFCNs

b)

c)

Fig.11-15: If a signal floats on a DC level (a) and is multiplied by a window function without offset compensation,
the ends will be tapered to zero, rather than to the DC level (b). By passing the DC level in the offset parameter, the
window function is correctly applied (c).

144

XCMDs and XFCNs

WriteDAC

Type: XCMD

Syntax:
WriteDAC DACchannel,DAClevel

Description:
This XCMD outputs an analog level (DAClevel, in mV, must be an integer) at
the output of one D/A converter (DACchannel, 0 or 1). This XCMD uses the
globals DACmin, DACmax and DACbits to determine the correct binary word to
write to the D/A converter in order to output the requested voltage. Any gain
external to the D/A converter is not taken into account, and you must scale
DAClevel accordingly before calling WriteDAC (see example).

Result:
None.

Example:

global DACGainTable -- contains external gain
information

put 0 into DACchannel -- the D/A channel (0 or 1)
put 1000 into DAClevel -- the analog output voltage
(mV)

-- adjust DAC level w.r.t external DAC gain
get line (DACchannel+1) in DACGainTable
put round(DAClevel/it) into adjDAClevel

-- output the analog level
WriteDAC DACchannel,adjDAClevel

145

XCMDs and XFCNs

WriteModeByte

Type: XCMD

Syntax:
WriteModeByte theByte

Description:
This XCMD writes theByte (0 to 255) to the mode register on the MacADIOS II
card. A value of 0 corresponds to a binary bit pattern of 00000000, and 255 to
11111111. Consult the MacADIOS II hardware manual for details on what each bit
does in the mode register. You can use this XCMD to reset any bits that were
cleared by SetADGain.

Result:
None.

Example:

put 2 into theByte
WriteModeByte theByte

Sets the programmable gain amplifier to 100.

146

XCMDs and XFCNs

WriteTTLbit

Type: XCMD

Syntax:
WriteTTLbit bitNumber,theLevel

Description:
This XCMD sets (theLevel = 1) or clears (theLevel = 0) bit bitNumber (0
to 7) of TTL output port. By presetting the level of a bit, you can determine the
polarity of pulses for functions that toggle TTL bits (e.g. AcqWaveTTL).

Result:
None.

Example:

put 2 into bitNumber
put 1 into theLevel
WriteTTLbit bitNumber,theLevel -- set bit 2 (third
bit)
.
.
AcqWaveTTL sampleInterval,npoints,startMUX,endMUX,
bitNumber,preTrig,pulseWidth,gList

By setting bit 2, AcqWaveTTL will generate an active low TTL pulse. It's always
a good idea to preset the level of toggled bits to ensure the correct polarity.
WaveTrak clears all output bits at startup.

147

XCMDs and XFCNs

WriteTTLbyte

Type: XCMD

Syntax:
WriteTTLbyte theByte

Description:
This XCMD writes theByte (0 to 255) to the TTL output port. A value of 0
corresponds to a binary bit pattern of 00000000, and 255 to 11111111. All 8 bits of
the port are affected.

Result:
None.

Example:

put 255 into theByte
WriteTTLbyte theByte

All 8 output bits will be TTL high. WaveTrak uses WriteTTLbyte to clear all
output bits at startup.

148

XCMDs and XFCNs

XYTableToWave

Type: XFCN

Syntax:
XYTableToWave (XYTable,"theWave",resultType)

Description:
This XFCN is the key function for importing data into WaveTrak. The input in
XYTable is an ASCII table of numerical values, assumed to be equally spaced in
time (or any other dimension). This function will convert the table and return a
compressed WaveTrak wave in the global variable theWave (double quotes are
included to remind you to pass the name of the global).

Although the name of the function suggests that tables of XY values are used for
input, tables of only Y values are recognized as well. If the first line contains a
delimiter, i.e. a comma, tab or any number of spaces, an XY table is assumed. If
no delimiters are found, a Y table is assumed. Every line must be terminated with
a carriage return. If an XY table is detected, the function returns as the sample
interval the difference between the first two X values (see Result, below). If a Y
table is detected, the sample interval is undefined and the function returns 0; you
will have to determine what the original sampling rate was yourself.

resultType tells the function what type of wave you would like returned (e.g. -
12, signed 12-bit binary; F, float; etc...). If an integer wave is requested, values
will be rounded. If one or more values is beyond the requested integer range, a
silent overflow error (XCMDErr = 42) is returned and the out-of-range elements
are clipped to the maximum or minimum allowable value; the remainder of the
conversion is completed.

Result:
Two-item, comma-delimited list:
1st item: sample interval, either the difference between the first two X values for
an XY table, or 0 for a Y table.
2nd item: number of points in converted waves (which equals the number of lines
in ASCII table).

149

XCMDs and XFCNs

Example 1, convert clipboard contents into a wave:

Assume that you pasted the following table of values from another application
onto the clipboard (each line ends with a carriage return):

-363.9
-290.6
-207.6
-134.3
 .
 .
 .
5277.2
5296.7
5306.5
5326.0
5335.8

The table consists of a total of 2048 entries (or lines). Executing the following
script would yield the following results:

global XCMDErr, theWave
put "F" into resultType -- convert floating point

values

-- copy the clipboard into a variable
put GetScrap() into XYTable

-- translate Y values into a WaveTrak wave
get XYTableToWave (XYTable,"theWave",resultType)
put it into XYresult

No delimiters are present so the table is assumed to contain Y-values only. The
global variable theWave will contain the compressed floating point values
converted from the table; this wave will have 2048 points. XYresult will
contain "0,2048", signifying that the sampling rate could not be determined and
that there were 2048 points converted.

150

XCMDs and XFCNs

Example 2, convert a disk file into a wave:

You have a text file containing the following ASCII data (each line ends with a
carriage return):

0,-363.9
10,-290.6
20,-207.6
30,-134.3
 .
 .
 .
50920,5277.2
50930,5296.7
50940,5306.5
50950,5326.0
50960,5335.8

The table consists of a total of 2048 entries (or lines). Executing the following
script would yield the following results:

global XCMDErr, theWave
-- convert signed 12-bit integer values
put -12 into resultType

-- select the file
answer file "Select the input file:" of type TEXT
put it into fName
-- read entire file into fBuffer
put empty into fBuffer
open file fName
repeat

read from file fName for 16834
if it is empty then exit repeat
put it after fBuffer

end repeat
close file fName

-- translate X,Y values into a WaveTrak wave
get XYTableToWave (fBuffer,"theWave",resultType)
put it into XYresult

151

XCMDs and XFCNs

Delimiters are present (commas) so the table is assumed to contain X,Y pairs. The
global variable theWave will contain the compressed 12-bit signed integer values
converted from the table; this wave will have 2048 points. Note that all values will
be rounded to integers, and that any values less than -2048 or greater than 2047
will be clipped to these limits; that is the last several lines shown in the sample text
will all be limited to 2047, as this is the maximum range that can be represented by
a signed 12 bit integer. The global XCMDErr is set to 42 indicating that an
overflow occurred. XYresult will contain "10,2048", signifying that the
sampling interval was calculated as 10, and that there were 2048 points converted.

152

XCMDs and XFCNs

In Summary

• The WaveTrak data acquisition and digital signal processing toolbox consists of
over 70 highly optimized XCMDs and XFCNs.

• You invoke XCMDs and XFCNs much as you would normal HyperTalk
commands and functions, respectively. The parameter list must be enclosed in
parentheses when calling XFCNs, but not when calling XCMDs.

• XFCNs return a single result as the value of the function (although they may
additionally return multiple results in global variables).

• When passing global variables to receive data from an XCMD/XFCN, always
pass the name(s) of the globals, either as quoted literals, or as variables
containing the name(s) of the global variables.

• All XCMDs/XFCNs report errors in the global XCMDErr. A value of zero
means no error occurred.

153

